

- 2 channels sampled at 12-bit resolution
- 50 MS/s simultaneous real-time sampling rate on each input
- Up to 8 Million samples of on-board acquisition memory per channel
- ±40 mV to ±20 V input range
- Asynchronous DMA device driver
- AlazarDSO[®] Oscilloscope Software
- Software Development Kit supports C/C++, C#, Python, MATLAB®, LabVIEW®
- Support for Windows[®] & Linux[®]

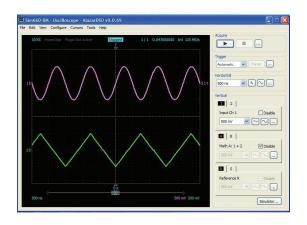
Product	Bus	Operating System	Channels	Sampling Rate	Bandwidth	Memory Per Channel	Resolution
ATS9130	PCIe x1 Gen 1	32-bit/64-bit Windows & 64-bit Linux	2	50 MS/s to 1 KS/s	25 MHz	8 Megasamples	12 bits

Overview

AlazarTech ATS®9130 is a dual-channel, 12 bit, 50 MS/s waveform digitizer card capable of storing up to 8 Million samples per channel of acquired data in its on-board memory or streaming acquired data to PC memory. ATS9130 is a single-lane PCI Express (PCIe x1) Gen 1 card, which supports up to 200 MB/s bus throughput.

Users can capture data from one trigger or a burst of triggers. Users can also stream very large datasets continuously to motherboard memory or hard disk.

ATS9130 PCI Express digitizers are an ideal solution for cost sensitive OEM applications that require a digitizer to be embedded into the customer's equipment.


ATS9130 is supplied with AlazarDSO oscilloscope software that lets the user get started immediately without having to write any software.

Users who need to integrate the ATS9130 in their own program can purchase a software development kit, ATS-SDK, for C/C++, C#, Python, MATLAB, and LabVIEW for both Windows and Linux operating system.

All of this advanced functionality is packaged in a low power, half-length PCI Express card.

Applications

Ultrasonic & Eddy Current NDT/NDE
Motor Winding Testing
Radar/RF Signal Recording & Analysis
High Resolution Oscilloscope
Lidar
Spectroscopy
Multi-Channel Transient Recording

PCI Express Bus Interface

ATS9130 interfaces to the host computer using a 1-lane PCI Express bus, operating at 2.5 Gbps.

According to PCIe specification, a 1-lane board can be plugged into any PCIe slot. ATS9130 requires at least one free slot on the motherboard. Electrically, ATS9130 is compatible with Gen 1, Gen 2, and Gen 3 slots.

The physical and logical PCIe x1 interface is provided by an on-board FPGA, which also integrates acquisition control functions, memory management functions and acquisition datapath. This very high degree of integration maximizes product reliability.

The AlazarTech® 200 MB/s benchmark was done using an Asus X299-A motherboard.

The same performance can be expected from virtually all other motherboards.

Analog Input

An ATS9130 features two analog input channels with extensive functionality. Each channel has 25 MHz of full power analog input bandwidth. With software selectable attenuation, you can achieve an input voltage range of ± 40 mV to ± 20 V.

Software selectable AC or DC coupling further increases the signal measurement capability. Software selectable 50 Ω input impedance makes it easy to interface to high speed RF signals.

Acquisition System

ATS9130 PCI digitizers use a pair of 50 MS/s, 12-bit ADCs to digitize the input signals. The real-time sampling rate ranges from 50 MS/s down to 1 KS/s. The two channels are guaranteed to be simultaneous, as they share the exact same clock.

An acquisition can consist of multiple records, with each record being captured as a result of one trigger event. A record may contain up to 4096 points of pre-trigger data.

In between the multiple records being captured, the acquisition system is re-armed by the hardware within 16 sampling clock cycles. This mode of capture, sometimes referred to as Multiple Record, is very useful for capturing data in applications with a very rapid trigger rate.

Examples of such applications include OCT, ultrasonic testing, NMR spectroscopy, motor testing and lightning test.

Recommended Motherboards or PCs

Many different types of motherboards and PCs have been benchmarked by AlazarTech. The ones that have produced the best throughput results (200 MB/s) are listed here: www.alazartech.com/images-media/2246-AlazarTechRecommendedMotherboards.pdf.

On-Board Acquisition Memory

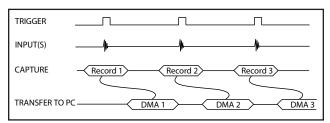
ATS9130 uses an on-board FIFO to temporarily store ADC data before DMAing it to motherboard memory.

Since the maximum data rate generated by ATS9130 is only 80 MB/s and its PCIe interface can DMA at 200 MB/s, it is possible to stream a very long, gapless dataset using the on-board FIFO.

FIFO-only acquisition mode can be used for scanning applications such as OCT, ultrasonic inspection, radar and lidar.

Pre-Trigger Acquisition

It is possible to acquire up to 4096 points of pre-trigger data.


Maximum Sustained Transfer Rate

Virtually all modern motherboards support the specified 200 MB/s throughput.

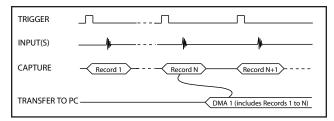
ATS9130 users can quickly determine the maximum sustained transfer rate for their motherboard by inserting their card in a PCIe slot and running the Tools:Benchmark:Bus tool provided in AlazarDSO software.

Traditional AutoDMA

In order to acquire both pre-trigger and post-trigger data in a dual-ported memory environment, users can use Traditional AutoDMA.

Data is returned to the user in buffers, where each buffer can contain from 1 to 8191 records (triggers). This number is called RecordsPerBuffer.

A BUFFER_OVERFLOW flag is asserted if more than 512 buffers have been acquired by the acquisition system, but not transferred to host PC memory by the AutoDMA engine.


In other words, a BUFFER_OVERFLOW can occur if more than 512 triggers occur in very rapid succession, even if all the on-board memory has not been used up.

No Pre-Trigger (NPT) AutoDMA

Many ultrasonic scanning and medical imaging applications do not need any pre-trigger data: only post-trigger data is sufficient.

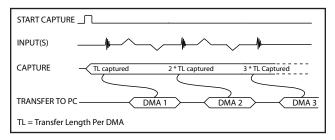
NPT AutoDMA is designed specifically for these applications. By only storing post-trigger data, the memory bandwidth is optimized.

Note that a DMA is not started until RecordsPerBuffer number of records (triggers) have been acquired.

NPT AutoDMA buffers do not include headers, so it is not possible to get trigger time-stamps.

More importantly, a BUFFER_OVERFLOW flag is asserted if the FPGA FIFO overflows.

NPT AutoDMA can easily acquire data to PC host memory at the maximum sustained transfer rate of the motherboard without causing an overflow.


This is the recommended mode of operation for most ultrasonic scanning, OCT and medical imaging applications.

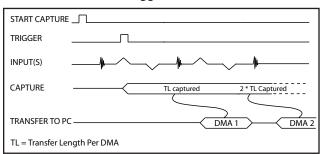
It is possible to acquire up to 4096 points of pretrigger data even in NPT mode.

Continuous AutoDMA

Continuous AutoDMA is also known as the data streaming mode.

In this mode, data starts streaming across the PCI bus as soon as the ATS9130 is armed for acquisition. It is important to note that triggering is disabled in this mode.

Continuous AutoDMA buffers do not include headers, so it is not possible to get trigger time-stamps.


A BUFFER_OVERFLOW flag is asserted if the FPGA FIFO overflows.

The amount of data to be captured is controlled by counting the number of buffers acquired. Acquisition is stopped by an AbortCapture command.

Continuous AutoDMA can easily acquire data to PC host memory at the maximum sustained transfer rate of the motherboard without causing an overflow. This is the recommended mode for very long signal recording.

Triggered Streaming AutoDMA

Triggered Streaming AutoDMA is virtually the same as Continuous mode, except the data transfer across the bus is held off until a trigger event has been detected.

Triggered Streaming AutoDMA buffers do not include headers, so it is not possible to get trigger time-stamps.

A BUFFER_OVERFLOW flag is asserted if the FPGA FIFO overflows.

As in Continuous mode, the amount of data to be captured is controlled by counting the number of buffers acquired. Acquisition is stopped by an AbortCapture command.

Triggered Streaming AutoDMA can easily acquire data to PC host memory at the maximum sustained transfer rate of the motherboard without causing an overflow.

Asynchronous DMA Driver

The various AutoDMA schemes discussed above provide hardware support for optimal data transfer. However, a corresponding high performance software mechanism is also required to make sure sustained data transfer can be achieved.

This proprietary software mechanism is called Async DMA (short for Asynchronous DMA).

A number of data buffers are posted by the application software. Once a data buffer is filled, i.e. a DMA has been completed, ATS9130 hardware generates an interrupt, causing an event message to be sent to the application so it can start consuming data. Once the data has been consumed, the application can post the data buffer back on the queue. This can go on indefinitely.

One of the great advantages of Async DMA is that almost 95% of CPU cycles are available for data processing, as all DMA arming is done on an event-driven basis.

Triggering

The ATS9130 is equipped with sophisticated analog and digital triggering options, such as programmable trigger thresholds and slope on any of the input channels or the External Trigger input.

While most oscilloscopes offer only one trigger engine, ATS9130 offers two trigger engines (called Engines J and K). This allows the user to combine the two engines using a logical OR operand.

The user can specify the number of records to capture in an acquisition, the length of each record and the amount of pre-trigger data.

A programmable trigger delay can also be set by the user. This is very useful for capturing the signal of interest in a pulse-echo application, such as ultrasound, radar, lidar etc.

External Trigger Input

ATS9130 external trigger input (TRIG IN) can be set as an analog input with ± 2.5 V full scale input range and 50 Ω input impedance, or a 3.3 V TTL (5 V compliant) input.

When TTL input is selected, the input impedance increases to approximately $6 \text{ k}\Omega$, making it easier to drive the TRIG IN input from high output impedance sources.

Trigger Time Stamp

A 40-bit time stamp counter comes standard with the ATS9130. By default, this counter is initialized to a zero value when an acquisition session is started and increments once for every sample captured, thus providing a 1-clock timing accuracy. At 50 MS/s sample rate, this counter will not roll over for well over 6 hours.

This allows the user to find out the timing of each trigger in a multiple record acquisition relative to the start of the acquisition.

It is also possible to configure the timestamp counter to reset for the first acquisition only and never again, until a software reset is issued. This feature enables users to obtain precise timing information about multiple acquisitions.

Optional External Clock

While the ATS9130 features a 10 MHz TCXO as the source of the timebase system, there may be occasions when digitizing has to be synchronized to an external clock source.

ATS9130 External Clock option provides an SMA input for an external clock signal with a frequency between 50 MHz and 1 MHz.

Users can also set a decimation factor for the external clock. For example, if the user wants to digitize the input signal on every tenth clock edge, this factor can be set to 10. Minimum decimation value is 1 and maximum is 100,000.

There are two types of External Clock supported by ATS9130. These are described below.

Fast External Clock

A new sample is taken by the on-board ADCs for each rising (or falling) edge of this External Clock signal.

In order to satisfy the clocking requirements of the ADC chips being used, Fast External Clock frequency must always be higher than 1 MHz and lower than 50 MHz.

10 MHz Reference Clock

It is possible to generate the sampling clock based on an external 10 MHz reference input. This is useful for RF systems that use a common 10 MHz reference clock.

ATS9130 uses an on-FPGA low-jitter PLL to generate the 50 MHz clock used by the ADC.

AUX Connector

ATS9130 provides an AUX (Auxiliary) BNC connector that is configured as a Trigger Output connector by default.

When configured as a Trigger Output, AUX BNC connector outputs a 5 Volt TTL signal synchronous to the ATS9130 Trigger signal, allowing users to synchronize their test systems to the ATS9130 Trigger. Note that the Trigger output is synchronized to a divide-by-8 clock (dual channel mode) or divide-by-16 clock (single channel mode).

When combined with the Trigger Delay feature of the ATS9130, this option is ideal for ultrasonic and other pulse-echo imaging applications.

AUX connector can also be used as a Trigger Enable Input and programmable Clock Output.

Calibration

Every ATS9130 digitizer is factory calibrated for gain and offset accuracy to NIST- or CNRC-traceable standards, using an oscilloscope calibrator. To recalibrate an ATS9130, the digitizer must either be shipped back to the factory or a qualified metrology laboratory.

RoHS Compliance

ATS9130 units are fully RoHS compliant, as defined by Directive 2015/863/EU (RoHS 3) of the European Parliament and of the Council of 31 March 2015 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

All manufacturing is done using RoHS-compliant components and lead-free soldering.

AlazarDSO Software

ATS9130 is supplied with the powerful AlazarDSO software that allows the user to setup the acquisition hardware and capture, display and archive the signals.

The Stream-To-Memory command in AlazarDSO allows users to stream a large dataset to motherboard memory.

AlazarDSO software also includes powerful tools for benchmarking the computer bus and disk drive.

Software Development Kits

AlazarTech provides easy to use software development kits for customers who want to integrate the ATS9130 into their own software.

A Windows and Linux compatible software development kit, called ATS-SDK, includes headers, libraries and source code sample programs written in C/C++, C#, Python, MATLAB, and LabVIEW. These programs can fully control the ATS9130 and acquire data in user buffers.

The purchase of an ATS-SDK license includes a subscription that provides the following benefits for a period of 12 months from the date of purchase:

- Download ATS-SDK updates from the AlazarTech website;
- Receive technical support on ATS-SDK.

Customers who want to receive technical support and download new releases beyond this 12 month period should purchase extended support and maintenance (order number ATS-SDK-1YR).

ATS-GPU

ATS-GPU is a software library developed by AlazarTech to allow users to do real-time data transfer from ATS9130 to a CUDA $^{\rm @}$ -enabled GPU card at full bus speed.

Modern GPUs include very powerful processing units and a very high speed graphical memory bus. This combination makes them perfectly suited for signal processing applications.

ATS-GPU-BASE is supplied with an example user application in source code. The application includes GPU kernels that use ATS-GPU to receive data, do very simple signal processing (data inversion), and copy the processed (inverted) data back to a user buffer. All this is done at the highest possible data transfer rate.

Programmers can replace the data inversion code with application-specific signal processing kernels to develop custom applications.

ATS-GPU-OCT is the optional OCT Signal Processing library for ATS-GPU. It contains floating point FFT routines that have also been optimized to provide the maximum number of FFTs per second. Kernel code running on the GPU can do zero-padding, apply a windowing function, do a floating point FFT, calculate the amplitude and convert the result to a log scale. It is also possible to output phase information.

ATS-GPU supports 64-bit Windows and 64-bit Linux for CUDA®-based development.

ATS-GMA

ATS-GMA is a software library developed by AlazarTech that allows users to DMA data from ATS9130 to an AMD Radeon™ Pro GPU card at full bus speed, with a latency as low as 100 µs. ATS-GMA does not use any host memory buffers for temporary storage.

ATS-GMA-BASE is supplied with an example user application in source code. The application includes GPU

kernels that use ATS-GMA to receive data, do very simple signal processing (data inversion), and, if required, copy the processed (inverted) data to a user buffer. All this is done at the highest possible data transfer rate.

Programmers can replace the data inversion code with application-specific signal processing kernels to develop custom applications.

ATS-GMA-OCT is the optional OCT Signal Processing library for ATS-GMA. It contains floating point FFT routines that have also been optimized to provide the maximum number of FFTs per second. Kernel code running on the GPU can do zero-padding, apply a windowing function, do a floating point FFT, calculate the amplitude and convert the result to a log scale. It is also possible to output phase information.

ATS-GMA supports 64-bit Windows 7 and Windows 10 for OpenCL $^{\text{TM}}$ -based development.

Support for Windows

Windows support for ATS9350 includes Windows 7, Windows 8.x, Windows 10, Windows Server® 2008 R2, Windows Server 2010 and Windows Server 2013.

Due due to lack of demand and due to the fact that Microsoft no longer supports these operating systems, AlazarTech no longer supports Windows XP, Windows Vista, and Windows Server 2008.

Linux Support

AlazarTech offers ATS9130 binary drivers for most of the popular Linux distributions, such as CentOS, Ubuntu,...

Users can download the binary driver for their specific distribution by choosing from the available drivers here:

ftp://release@ftp.alazartech.com/outgoing/linux

Also provided is a GUI application called AlazarFront-Panel that allows simple data acquisition and display.

ATS-SDK includes source code example programs for Linux, which demonstrate how to acquire data programmatically using a C compiler.

If customers want to use ATS9130 in any Linux distribution other than the one listed above, they can have the AlazarTech engineering team generate an appropriate driver for a nominal fee, if applicable.

Based on a minimum annual business commitment, the Linux driver source code license (order number ATS9130-LINUX) may be granted to qualified OEM customers for a fee. For release of driver source code, a Non-Disclosure Agreement must be executed between the customer's organization and AlazarTech.

All such source code disclosures are made on an as-is basis with limited support from the factory.

Export Control Classification

According to the Export Controls Division of Government of Canada, ATS9130 is currently not controlled for export from Canada. Its export control classification is N8, which is equivalent to ECCN EAR99. ATS9130 can be shipped freely outside of Canada, with the exception of countries listed on the Area Control List and Sanctions List. Furthermore, if the end-use of ATS9130, in part or in its entirety, is related to the development or deployment of weapons of mass destruction, AlazarTech is obliged to apply for an export permit.

EC Conformity

ATS9130 conforms to the following standards:

Electromagnetic Emissions:

CISPR 22:2006/EN 55022:2006 (Class A):

Information Technology Equipment (ITE). Radio disturbance characteristics. Limits and method of measurement.

Electromagnetic Immunity:

CISPR 24:1997/EN 55024:1998 (+A1 +A2):

Information Technology Equipment Immunity characteristics — Limits and methods of measurement.

Safety:

IEC 60950-1:2005: Information technology equipment — Safety — Part 1: General requirements.

IEC 60950-1:2006: Information technology equipment — Safety — Part 1: General requirements.

ATS9130 also follows the provisions of the following directives: 2006/95/EC (Low Voltage Equipment); 2004/108/EC (Electromagnetic Compatibility).

FCC & ICES-003 Compliance

ATS9130 has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15, subpart B of the FCC Rules, and the Canadian Interference-Causing Equipment Standard ICES-003:2004.

MATLAB is a trademark and/or registered trademark of The MathWorks, Inc. LabVIEW is a trademark and/or registered trademark of National Instruments. Windows and Windows Server are trademarks and/or registered trademarks of Microsoft Corporation in the U.S. and/or other countries.

Linux is a registered trademark of Linus Torvalds.

CUDA is a trademark and/or registered trademark of NVIDIA Corporation in the U.S. and/or other countries.

Radeon is a trademark of Advanced Micro Devices, Inc.

OpenCL is a trademark of Apple Inc.

All other trademarks are the property of their respective owners.

 $^{^\}dagger$ AlazarDSO, AlazarTech, and AlazarTech ATS are registered trademarks of Alazar Technologies Inc.

System Requirements

Personal computer with at least one free PCIe slot, 16 GB RAM, 100 MB of free hard disk space, SVGA display adaptor and monitor with at least a 1024×768 resolution.

Power Requirements

+12 V 1 A, typical +3.3 V 0.25 A, typical

Physical

Size Single slot, half length PCI Express

card (4.38 inches x 6.5 inches excluding the connectors protruding from the front panel)

Weight 142 g

I/O Connectors

CH A, CH B,
TRIG IN, AUX I/O
BNC female connectors
ECLK
SMA female connector

Environmental

Operating temperature 0 to 55 degrees Celsius
Storage temperature -20 to 70 degrees Celsius
Relative humidity 5 to 95%, non-condensing

Acquisition System

Resolution 12 bits

Data is returned as MSB-justified 16 bit unsigned integers

Bandwidth (-3 dB)

 $\begin{array}{lll} \text{DC-coupled, 1 M}\Omega & \text{DC - 25 MHz} \\ \text{DC-coupled, 50 }\Omega & \text{DC - 25 MHz} \\ \text{AC-coupled, 1 M}\Omega & \text{10 Hz - 25 MHz} \\ \text{AC-coupled, 50 }\Omega & \text{100 kHz - 25 MHz} \\ \end{array}$

Bandwidth flatness: $\pm 3 dB$

Number of channels 2, simultaneously sampled Maximum Sample Rate 50 MS/s single shot

Minimum Sample Rate 1 KS/s single shot for internal

clocking

Full Scale Input ranges

1 M Ω input impedance: ± 40 mV, ± 50 mV, ± 80 mV,

±100 mV, ±200 mV, ±400 mV, ±500 mV, ±800 mV, ±1 V, ±2 V, ±4 V, ±5 V, ±8 V, ±10 V, and ±20 V, software selectable

50 Ω input impedance: ± 40 mV, ± 50 mV, ± 80 mV,

 ± 100 mV, ± 200 mV, ± 400 mV, ± 500 mV, ± 800 mV, ± 1 V, ± 2 V, and ± 4 V, software selectable

DC accuracy $\pm 2\%$ of full scale in all input ranges Input coupling AC or DC, software selectable

Input impedance 50 Ω or

1 M Ω ±1% in parallel with 55 pF ±5 pF, software selectable For input ranges ≥2 V: 53 pF ±2 pF For input ranges ≤1 V: 56 pF ±2 pF Input protection

CH B and EXT only without external attenuation)

 \pm 4 V (DC + peak AC for CH A,

CH B and EXT only without external attenuation)

On-Board Acquisition Memory System

Onboard acq memory On-FPGA FIFO

Record Length Software selectable with 32-point

resolution, specified in number of sample points. Must be a minimum of 256 points and must be a

multiple of 16.

Number of Records Software selectable from a

minimum of 1 to a maximum of infinite number of records

Pre-trigger depth

Single-channel 0 to 4080, software selectable

with 16 point resolution

Dual-channel 0 to 2040, software selectable

with 16 point resolution

Post-trigger depth Record Length - Pre-trigger depth

Timebase System

Timebase options Internal Clock or

External Clock (Optional)

Internal Sample Rates 50 MS/s, 25 MS/s, 10 MS/s,

5 MS/s, 2 MS/s, 1 MS/s, 500 KS/s, 200 KS/s, 100 KS/s, 50 KS/s, 20 KS/s, 10 KS/s, 50 KS/s, 20 KS/s, 10 KS/s, 5 KS/s, 2 KS/s, 1 KS/s

Internal Clock accuracy ±25 ppm

Dynamic Parameters

Typical values measured using a randomly selected ATS9130 in ± 1 V input range, DC coupling and 50 Ω impedance. Input was provided by a HP8656A signal generator, followed by a 9-pole, 1 MHz band-pass filter. Input frequency was set at 1 MHz and amplitude was 650 mV rms (92% of full scale input).

 SNR
 60 dB

 SINAD
 58 dB

 THD
 -61 dB

 SFDR
 -62 dB

Note that these dynamic parameters may vary from one unit to another, with input frequency and with the full scale input range selected.

Optional ECLK (External Clock) Input

Signal Level ±200 mV sine wave or 3.3 V LVTTL

 $50~\Omega$ for AC signals

10 k Ω for DC

Input coupling AC

Input impedance

Maximum frequency 50 MHz for Fast External Clock
Minimum frequency 1 MHz for Fast External Clock

Sampling Edge Rising Maximum amplitude 2 V_{p-p}

Optional 10 MHz Reference Input

Signal Level ±200 mV sine wave or square

wave 50 Ω

Input impedance Input Coupling AC coupled

Input frequency $10 \text{ MHz} \pm 0.1 \text{ MHz}$

10.1 MHz Maximum frequency 9.9 MHz Minimum frequency

Sampling Clock Freq. 50 MHz fixed. Lower sample rates

available using decimation

Triggering System

Mode Edge triggering with hysteresis

Comparator Type Analog comparators

Number of Trigger Engines

Trigger Engine Combination Engine J, engine K, J OR K,

software selectable

Trigger Engine Source CH A, CH B, EXT, Software or

None, independently software selectable for each of the two

Trigger Engines

Hysteresis ±5% of full scale input, typical

Trigger sensitivity ±10% of full scale input range.

This implies that the trigger system may not trigger reliably if the input has an amplitude less than ±10% of full scale input range selected

±5%, typical, of full scale input Trigger level accuracy

range of the selected trigger

source Bandwidth 25 MHz

Trigger Delay Software selectable from 0

to 9,999,999 sampling clock cycles. Has to meet alignment requirements (see ATS-SDK User Manual for more information).

Software selectable with a 10 us Trigger Timeout

resolution. Maximum settable value is 3,600 seconds. Can also be disabled to wait indefinitely for

a trigger event

TRIG IN (External Trigger) Input

Input type Analog or 3.3 V TTL (5 V compliant),

software selectable

Input coupling DC only Analog input impedance 1 ΜΩ Analog bandwidth (-3 dB) DC - 25 MHz Analog input range

Analog DC accuracy ±10% of full scale input Analog input protection ±8 V (DC + peak AC without

external attenuation)

TTL input impedance $10 \text{ k}\Omega \pm 10\%$

32 ADC sampling clocks TTL min. pulse width

TTL min. pulse amplitude 2 Volts

TTL input protection -0.7 V to + 5.5 V Auxiliary I/O (AUX I/O)

Signal direction Input or Output, software

selectable. Trigger Output by

default

Output types: Trigger Output

Busy Output

Software controlled Digital Output

Input types: Trigger Enable

Software readable Digital Input

Output

Amplitude: 5 Volt TTL

Synchronization: Synchronized to a clock derived

from the ADC sampling clock. Divide-by-4 clock (dual channel mode) or divide-by-8 clock (single channel mode)

Input

3.3 Volt TTL (5 Volt compliant) Amplitude:

Materials Supplied

ATS9130 PCIe Card

ATS9130 Installation Disk (on USB Flash Drive)

Certification and Compliances

RoHS 3 (Directive 2015/863/EU) Compliance

CE Marking — EC Conformity

FCC Part 15 Class A / ICES-003 Class A Compliance

All specifications are subject to change without notice

ORDERING INFORMATION

ATS9130 ATS9130-001

ATS9130-005 ATS9130: External Clock Upgrade

ATS9130: One Year Extended Warranty ATS9130-061

Software Development Kit ATS-SDK

1 Year Subscription

(Supports C/C++, Python, MATLAB, and LabVIEW)

ATS-GPU-BASE: GPU Streaming Library ATSGPU-001

1 Year Subscription

ATS-GPU-OCT: Signal Processing Library ATSGPU-101

1 Year Subscription (requires ATSGPU-001)

ATS-GMA-BASE: GPU Streaming Library ATSGMA-001

1 Year Subscription

ATS-GMA-OCT: Signal Processing Library

1 Year Subscription (requires ATSGMA-001)

ATSGMA-101

Manufactured By:

Alazar Technologies Inc.

6600 TRANS-CANADA HIGHWAY, SUITE 310 POINTE-CLAIRE, QC, CANADA H9R 4S2

TOLL FREE: 1-877-7-ALAZAR TEL: (514) 426-4899 FAX: (514) 426-2723

F-MAII: sales@alazartech.com