

• 3 GB/s PCIe Gen 3 (4-lane) interface

• 2 channels sampled at 12-bit resolution

1 GS/s real-time sampling rate

 512 Megasamples of on-board acquisition memory per channel

- Variable frequency external clocking
- Continuous streaming mode
- ±400 mV fixed input range
- AlazarDSO[®] oscilloscope software
- Software Development Kit supports C/C++, C#, Python, MATLAB[®], LabVIEW[®]
- Support for Windows[®] & Linux[®]

Product	Bus	Operating System	Channels	Max. Sample Rate	Bandwidth	Memory Per Channel	Resolution
ATS9364	PCIe x4 Gen 3	64-bit Windows & 64-bit Linux	2	1 GS/s on 2 channels	500 MHz	512 Megasamples	12 bits

Overview

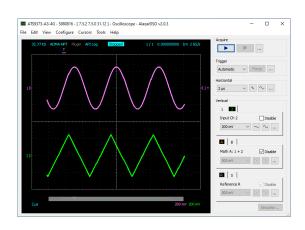
AlazarTech ATS®9364 is a 4-lane PCI Express Gen 3 (PCIe x4), dual-channel, high-speed, 12-bit, 1 GS/s waveform digitizer card capable of acquiring data into its on-board memory or streaming acquired data to PC memory at rates up to 3 GB/s.

There are two A/D converters on the ATS9364 board, each running at 1 GS/s. Unlike other products on the market, ATS9364 does not use interleaved sampling. Each input has its own 12-bit, 1 GSPS ADC chip.

Optional variable frequency external clock allows operation from 1 GHz down to 300 MHz (or 100 MHz for screened ATST364 cards), making ATS9364 an ideal waveform digitizer for many applications.

Users can capture data from one trigger or a burst of triggers. Users can also stream very large datasets continuously to PC memory or hard disk.

ATS9364 is supplied with AlazarDSO software that lets the user start data acquisition immediately, without having to go through a software development process.


Users who need to integrate the ATS9364 in their own program can purchase a software development kit, ATS-SDK, for C/C++, C#, Python, MATLAB, and LabVIEW for both Windows and Linux operating systems.

All of this advanced functionality is packaged in a low power, half-length PCI Express Gen 3 card.

Applications

Optical Coherence Tomography (OCT)
Ultrasonic & Eddy Current NDT/NDE
RF Signal Recording & Analysis
Terabyte Storage Oscilloscope
High-Resolution Oscilloscope
Spectroscopy

Multi-Channel Transient Recording

PCI Express Gen 3 Bus Interface

ATS9364 interfaces to the host computer using an 4-lane PCI Express bus. Each lane operates at 8.0 Gbps (Gen 3).

According to PCIe specification, an 4-lane board can be plugged into any 4-lane, 8-lane, or 16-lane slot, but not into a 1-lane slot. As such, ATS9364 requires at least one free 4-lane, 8-lane, or 16-lane slot on the motherboard.

ATS9364 is fully compatible with motherboards of all generations of PCI Express (Gen 1, Gen 2 or Gen 3). At run-time, ATS9364 and the motherboard negotiates the appropriate link speed and width.

The physical and logical PCIe Gen 3 x4 interface is provided by an on-board FPGA, which also integrates acquisition control functions, memory management functions, acquisition datapath and DSP logic. This very high degree of integration maximizes product reliability.

The AlazarTech $^{\circ}$ 3 GB/s benchmark was done on an ASRock Z590 Taichi motherboard.

Users must always be wary of throughput specifications from manufacturers of waveform digitizers. Some unscrupulous manufacturers tend to specify the raw, burst-mode throughput of the bus. AlazarTech, on the other hand, specifies the benchmarked sustained throughput. To achieve such high throughput, a great deal of proprietary memory management logic and kernel mode drivers have been designed.

Analog Input

An ATS9364 features two analog input channels. Each channel has up to 1.0 GHz of full power analog input bandwidth. Input voltage range is fixed at ±400 mV.

It must be noted that input impedance of both channels is fixed at 50 Ω . Input coupling is fixed to DC.

Acquisition System

ATS9364 PCI Express digitizers use state-of-the-art dual 1 GS/s, 12-bit ADCs to digitize the input signal.

The two channels are guaranteed to be simultaneous, as the two ADCs use a common clock. Note that it is not possible to perform dual edge sampling (DES) on ATS9364.

An acquisition can consist of multiple records, with each record being captured as a result of one trigger event. A record can contain both pre-trigger and post-trigger data. Up to 8176 pre-trigger points can be captured in single channel mode and 4088 in dual-channel mode. ATS9364 can capture an infinite number of triggers. In between the multiple triggers being captured, the acquisition system is re-armed by the hardware within 256 sampling clock cycles.

This mode of capture, sometimes referred to as Multiple Record, is very useful for capturing data in applications with a very rapid or unpredictable trigger rate. Examples of such applications include medical imaging, ultrasonic testing, OCT and NMR spectroscopy.

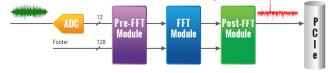
On-Board Acquisition Memory

ATS9364 provides 512 Million samples per channel of on-board dual-port memory that can be used for signal storage.

This on-board memory is used as a very deep FIFO to temporarily store acquired ADC data before transferring it to motherboard memory using proprietary DMA engines. This on-board buffer allows loss-less data transfer even if the computer is temporarily interrupted by other tasks.

Maximum Sustained Transfer Rate

PCI Express support on different motherboards may vary, resulting in non-optimal data transfer rates. The reasons behind these differences are complex and varied and will not be discussed here.


ATS9364 users can quickly determine the maximum sustained transfer rate for their motherboard by inserting their card in a PCIe slot and running the bus benchmarking tool provided in AlazarDSO for Windows or AlazarFrontPanel for Linux.

Recommended Motherboards or PCs

Many different types of motherboards and PCs have been benchmarked by AlazarTech. The ones that have produced the best throughput results (up to 3 GB/s) are listed here: www.alazartech.com/images-media/2246-AlazarTechRecommendedMotherboards.pdf.

Optional FPGA-Based FFT Processing

ATS9364 On-FPGA FFT option provides the ability to do real-time FFT signal processing using the ATS9364 on-board FPGA*. Note that only one input can be processed.

Up to 4096-point FFT length is supported. A user programmable complex windowing function can be applied to the acquired data before FFT calculation.

The complex FFT output is converted to magnitude in single precision floating-point format. A logarithmic output is also available.

Based on customer feedback, output formats of on-FPGA FFT have been reduced to:

- 10 * Log of amplitude²
- Square Root of amplitude²

These outputs provide more than sufficient image resolution in typical OCT applications.

If other outputs, such as phase or multiple channel FFT, are required, ATS-GPU-OCT or ATS-GPU-NUFFT can be used.

It is also possible to DMA both frequency and time domain data. This allows users to verify FPGA-based FFT operation during algorithm development.

ATS9364 can perform 200,000 4096-point FFTs per second.


FPGA-based FFT is ideal for customers in the Optical Coherence Tomography (OCT) field.

*Order part number ATS9364-010 for optional FPGA Firmware. Firmware version 6.05 or later, and ATSApi library and driver version 7.9.1 or later are required. If ordered after digitizer delivery, customer will have to perform the firmware update. Furthermore, if the update is for an ATS9364 that is no longer under warranty, AlazarTech requires that a series of tests be performed to validate that the digitizer is in working condition.

No Pre-Trigger (NPT) AutoDMA

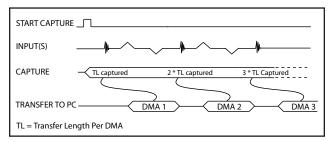
Many ultrasonic scanning and medical imaging applications do not need any pre-trigger data: only post-trigger data is sufficient.

NPT AutoDMA is designed specifically for these applications. By only storing post-trigger data, the memory bandwidth is optimized and the entire onboard memory acts like a very deep FIFO.

Note that a DMA is not started until (RecordsPerBuffer +1) number of records (triggers) have been acquired and written to the on-board memory.

NPT AutoDMA buffers do not include headers. However, users can specify that each record should come with its own footer that contains a 40-bit trigger timestamp. The footer is called NPT Footer.

More importantly, a BUFFER_OVERFLOW flag is asserted only if the entire on-board memory is used up. This provides a very substantial improvement over Traditional AutoDMA.

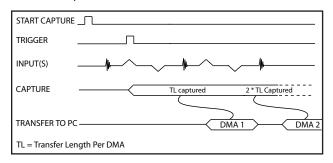

NPT AutoDMA can easily acquire data to PC host memory at the maximum sustained transfer rate of the motherboard without causing an overflow.

This is the recommended mode of operation for most ultrasonic scanning, OCT and medical imaging applications.

It should be noted that even though this mode is called "No Pre Trigger", it is possible to do limited pre-trigger data captures, i.e. up to 8176 points in single channel mode and 4088 points in dual channel mode.

Continuous AutoDMA

Continuous AutoDMA is also known as the data streaming mode. In this mode, data starts streaming across the PCIe bus as soon as the ATS9364 is armed for acquisition. It is important to note that triggering is disabled in this mode.


Continuous AutoDMA buffers do not include headers, so it is not possible to get trigger time-stamps. A BUFFER_OVERFLOW flag is asserted only if the entire on-board memory is used up.

The amount of data to be captured is controlled by counting the number of buffers acquired. Acquisition is stopped by an AbortCapture command.

Continuous AutoDMA can easily acquire data to PC host memory at the maximum sustained transfer rate of the motherboard without causing an overflow. This is the recommended mode for very long signal recording.

Triggered Streaming AutoDMA

Triggered Streaming AutoDMA is virtually the same as Continuous mode, except the data transfer across the bus is held off until a trigger event has been detected. Triggered Streaming AutoDMA buffers do not include headers, so it is not possible to get trigger time-stamps.

A BUFFER_OVERFLOW flag is asserted only if the entire on-board memory is used up.

As in Continuous mode, the amount of data to be captured is controlled by counting the number of buffers acquired. Acquisition is stopped by an AbortCapture command.

Triggered Streaming AutoDMA can easily acquire data to PC host memory at the maximum sustained transfer rate of the motherboard without causing an overflow. This is the recommended mode for RF signal recording that has to be started at a specific time, e.g. based on a GPS pulse.

Asynchronous DMA Driver

The various AutoDMA schemes discussed above provide hardware support for optimal data transfer. However, a corresponding high-performance software mechanism is also required to make sure sustained data transfer can be achieved.

This proprietary software mechanism is called Async DMA (short for Asynchronous DMA).

A number of data buffers are posted by the application software. Once a data buffer is filled, i.e. a DMA has been completed, ATS9364 hardware generates an interrupt, causing an event message to be sent to the application so it can start consuming data. Once the data has been consumed, the application can post the data buffer back on the queue. This can go on indefinitely.

One of the great advantages of Async DMA is that almost 95% of CPU cycles are available for data processing, as all DMA arming is done on an event-driven basis.

To the best of our knowledge, no other supplier of waveform digitizers provides asynchronous software drivers. Their synchronous drivers force the CPU to manage data acquisition, thereby slowing down the overall data acquisition process.

Output Data Format

By default, ATS9364 data comes out as unsigned binary, where code 0 represents the negative full scale, code $(2^{n-1}-1)$ represents the positive full scale with zero being 2^{n-2} .

It is possible to change the data format to signed binary using an API call. In signed binary format, zero is represented by code 0, positive full scale is represented by $(2^{n-2}-1)$ and negative full scale is represented by (2^{n-2}) .

Data Packing Mode

By default, ATS9364 stores 12-bit data acquired by its on-board A/D converters as a 16-bit integer. Users can also choose to pack the data as 12-bit integers or even 8-bit integers. Being able to reduce the total amount of data being transferred can be very useful in data recording applications.

Note that it is the user application's responsibility to unpack the data. Also note that NPT Footers are not available in Data Packing Mode.

Triggering

ATS9364 is equipped with sophisticated digital triggering options, such as programmable trigger thresholds and slope on any of the input channels or the External Trigger input.

While most oscilloscopes offer only one trigger engine, ATS9364 offers two trigger engines (called Engines J and K).

The user can specify the number of records to capture in an acquisition, the length of each record and the amount of pre-trigger data.

A programmable trigger delay can also be set by the user. This is very useful for capturing the signal of interest in a pulse-echo application, such as ultrasound, radar, lidar etc.

External Trigger Input

ATS9364 external trigger input (TRIG IN) is a 3.3 V TTL input. External Trigger must be a 3.3 V TTL digital signal. Minimum pulse height requirement is 2.0 Volts. Input impedance of this input is 6.6 k Ω .

Analog signals and smaller amplitude digital signals will not be detected as trigger events.

User can select between rising edge and falling edge of this signal as the trigger event.

Note: If full 12-bit resolution is required, users should select CH A or CH B as the trigger source. When the External Trigger Input is used as the trigger source, the least significant bit (LSB) of each 12-bit sample is replaced by the state of the external trigger signal source.

Timebase

ATS9364 timebase can be controlled either by onboard low-jitter VCO or by optional External Clock.

On-board low-jitter VCO uses a 10 MHz TCXO as a reference clock.

Optional External Clock

While the ATS9364 features low-jitter VCO and a 10 MHz TCXO as the source of the timebase system, there may be occasions when digitizing has to be synchronized to an external clock source.

ATS9364 External Clock option provides an SMA input for an external clock signal, which should have a high slew rate. Signal levels, specified in detail on page page 8, must be respected.

Input impedance for the External Clock input is fixed at 50 Ω . External clock input is always AC-coupled.

There are two types of External Clock supported by ATS9364: Fast External Clock and 10 MHz Reference.

Fast External Clock

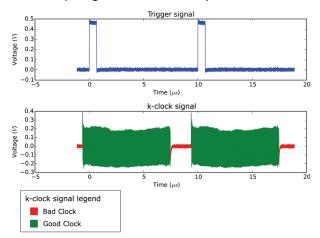
A new sample is taken by the on-board ADC for each rising edge of this External Clock signal.

In order to satisfy the clocking requirements of the ADC chip being used, Fast External Clock frequency must always be higher than 300 MHz and lower than 1 GHz.

For customers whose external clocks may go lower than 300 MHz during the acquisition, it is possible to have AlazarTech screen the ATS9364 boards for external clock operation down to 100 MHz (Order number ATS9364-006)

This is the ideal clocking scheme for OCT applications.

10 MHz Reference Clock


With the optional external clock upgrade, it is possible to generate the sampling clock based on an external 10 MHz reference input. This is useful for RF systems that use a common 10 MHz reference clock.

ATS9364 uses an on-board low-jitter VCO to generate the 1 GHz, 500 MHz, or 400 MHz high-frequency clock used by the ADC. This 1 GHz, 500 MHz, or 400 MHz sampling rate can then be decimated by a factor of 1, 2, 4, 8 or any other integer value that is divisible by 8.

OCT Ignore Bad Clock

The ADCs used on the ATS9364 require the external clock frequency to be above 300 MHz and lower than 1 GHz. In OCT applications, these limits cannot always be respected due to the nature of the optical source.

AlazarTech's *OCT Ignore Bad Clock* technology allows safe operation with these out-of-specification clocks without requiring the use of a dummy clock in the source.

See www.alazartech.com/en/technology/oct-ignore-bad-clock/ for more information on this technology.

AUX Connector

ATS9364 provides an AUX (Auxiliary) SMA connector that is configured as a Trigger Output connector by default.

When configured as a Trigger Output, AUX SMA connector outputs a 5 Volt TTL signal synchronous to the ATS9364 Trigger signal, allowing users to synchronize their test systems to the ATS9364 Trigger.

When combined with the Trigger Delay feature of the ATS9364, this option is ideal for ultrasonic and other pulse-echo imaging applications.

AUX connector can also be used as a Trigger Enable Input for Frame Capture (B-scan) applications. In fact, this is the most popular use of AUX connector in OCT applications.

Calibration

Every ATS9364 digitizer is factory calibrated to NIST- or CNRC-traceable standards. To recalibrate an ATS9364, the digitizer must be shipped back to the factory.

On-Board Monitoring

Adding to the reliability offered by ATS9364 are the on-board diagnostic circuits that constantly monitor over 20 different voltages, currents and temperatures. LED alarms are activated if any of the values surpass the limits.

AlazarDSO Software

ATS9364 is supplied with the powerful AlazarDSO software that allows the user to setup the acquisition hardware and capture, display and archive the signals.

The Stream-To-Memory command in AlazarDSO allows users to stream a large dataset to motherboard memory.

AlazarDSO software also includes powerful tools for benchmarking the computer bus and disk drive.

Software Development Kits

AlazarTech provides easy to use software development kits for customers who want to integrate the ATS9364 into their own software.

A Windows-compatible software development kit, called ATS-SDK, includes headers, libraries and source code sample programs written in C/C++, C#, Python, MATLAB, and LabVIEW.

A Linux-compatible software development kit, called ATS-devel, includes headers, libraries and source code sample programs written in C++ and Python.

These programs can fully control the ATS9364 and acquire data in user buffers.

The purchase of an ATS-SDK license includes a subscription that allows users to download ATS-SDK updates from the AlazarTech website for period of 12 months from the date of purchase.

Customers who want to download new releases beyond this 12 month period should purchase extended maintenance (order number ATS-SDK-1YR).

ATS-GPU

ATS-GPU is a software library developed by AlazarTech to allow users to do real-time data transfer from ATS9364 to a GPU card at rates up to 3 GB/s.

Interfacing waveform digitizers to GPUs involves creating a software mechanism to move data from one to the other and back to user buffers. The standard techniques used most often can get the job done, but feature very low data throughput due to software overheads.

AlazarTech designed ATS-GPU to eliminate this software bottleneck so that data can be moved from AlazarTech digitizers to GPUs and from GPUs to user buffers at full PCIe bus speeds. Once the data is available in GPU memory, many types of digital signal processing (DSP) can be done on this data at near-hardware speeds.

ATS-GPU-BASE is supplied with an example user application in source code. The application includes GPU kernels that use ATS-GPU to receive data, do very simple signal processing (data inversion), and copy the processed (inverted) data back to a user buffer. All this is done at the highest possible data transfer rate.

Programmers can replace the data inversion code with application-specific signal processing kernels to develop custom applications.

Version 23.1.0 and higher of ATS-GPU-BASE includes a Boxcar Averaging example kernel that provides the ability to perform real-time boxcar averaging on signals acquired by AlazarTech waveform digitizers using optimized GPU routines that allow raw data acquisition rates up to 6.9 GB/s. This signal processing module can lead to a major improvement of signal-to-noise ratio without using CPU resources and without doing FPGA programming.

ATS-GPU-OCT is the optional OCT Signal Processing library for ATS-GPU. It contains floating-point FFT routines that have also been optimized to provide the maximum number of FFTs per second. Kernel code running on the GPU can do zero-padding, apply a windowing function, do a floating-point FFT, calculate the amplitude and convert the result to a log scale. It is also possible to output phase information.

FFTs can be done on triggered data or on continuous gapless stream of data. It is also possible to do spectral averaging. Our benchmarks showed that it was possible to do 750,000 FFTs per second when capturing data in dual-channel mode and using a NVIDIA® Quadro® P5000 GPU.

ATS-GPU-NUFFT is an extension of ATS-GPU-OCT that allows non-uniform FFTs to be performed on data acquired uniformly in time domain using a fixed sampling rate. For SS-OCTs where the wavelength does not vary linearly in time, a fixed sampling rate results in data that is non-uniformly distributed in frequency

domain. ATS-GPU-NUFFT allows linearized FFTs to be performed on such data.

ATS-GPU supports 64-bit Windows and 64-bit Linux for CUDA®-based development.

Support for Windows

Windows support for ATS9364 includes Windows 11, Windows 10, Windows Server® 2019, and Windows Server 2016. As Windows Server 2019 and 2016 are seldom used by our customers, they are expected to work but are not regularly tested with each software release. If there are issues related to Windows Server 2016 or 2019, tech support may not be as rapid as for other operating systems.

Only 64-bit Windows operating systems are supported.

Microsoft mainstream support ended in 2018 for Windows 8.1 and Windows Server 2012 R2. As such, AlazarTech has ceased development on these operating systems. Current software and driver releases may work with these operating systems but they are not officially supported.

Due to lack of demand and due to the fact that Microsoft no longer supports these operating systems, AlazarTech no longer supports Windows 8, Windows 7, Windows XP, Windows Vista, Windows Server 2012, Windows Server 2008 R2, and Windows Server 2008.

Linux Support

AlazarTech offers Dynamic Kernel Module Support (DKMS) drivers for the following Linux distributions: Ubuntu, Debian, and RHEL®.

AlazarTech DKMS drivers may work for other Linux distributions but they have not been tested and technical support may be limited.

Users can download the DKMS driver and associated library for their specific distribution here:

www.alazartech.com/en/linux-drivers/ats9364/661/

Only 64-bit Linux operating systems are supported.

A GUI application called AlazarFrontPanel that allows simple data acquisition and display is also provided.

ATS-SDK includes source code example programs for Linux, which demonstrate how to acquire data programmatically using a C compiler. Note that example programs are only provided for Python and C++.

Based on a minimum annual business commitment, the Linux driver source code license (order number ATS9364-LINUX) may be granted to qualified OEM customers for a fee. For release of driver source code, a Non-Disclosure Agreement must be executed between the customer's organization and AlazarTech.

All such source code disclosures are made on an as-is basis with limited support from the factory.

Upgrading Your Digitizer in The Field

It is always recommended to get upgrades installed at the factory with the initial digitizer purchase.

If the digitizer is still under warranty, it may be possible to add certain upgrades in the field, but there is a small chance that the upgrade will not work, in which case the digitizer would need to be returned to the factory to complete the upgrade.

If the digitizer is no longer under warranty, the upgrade must be done at the factory and there will be a minimum service charge in addition to the cost of the upgrade. This is so that AlazarTech can verify that the digitizer meets basic performance levels prior to any upgrade.

Technical Support

AlazarTech is known for its world-class technical support. Customers receive free technical support on hardware products that are under warranty.

AlazarTech digitizers come with a standard one (1) year parts and labor warranty. This warranty can be extended for a fee (more information can be found in the next section: *Extended Warranty*).

If your waveform digitizer is out of warranty, you will not be eligible for free technical support on AlazarTech hardware or software products and you will need to purchase technical support hours (order number SUPPORT-HR5) to obtain assistance.

In addition, any necessary repairs to your out-ofwarranty hardware products will carry a minimum repair charge.

Extended Warranty

The purchase of an ATS9364 includes a standard one (1) year parts and labor warranty. Customers may extend their warranty by ordering an Extended Warranty (order number ATS9364-061).

This must be purchased before expiration of the standard warranty (or before expiration of an Extended Warranty). Extended Warranties can only be purchased while there is a valid warranty in place.

Users can purchase up to 4 (four) additional years of warranty extensions for a maximum total of 5 years of warranty.

Get your warranty end date by registering your product at: www.alazartech.com/en/my-account/my-products/.

Export Control Classification

According to the *Export Controls Division of the Government of Canada*, ATS9364 is currently not controlled for export from Canada. Its export control classification is N8, which is equivalent to ECCN EAR99. ATS9364 can be shipped freely outside of Canada, with the exception of countries listed on the

<u>Area Control List</u> and <u>Sanctions List</u>. Furthermore, if the end-use of ATS9364, in part or in its entirety, is related to the development or deployment of weapons of mass destruction, AlazarTech is obliged to apply for an export permit.

RoHS Compliance

ATS9364 is fully RoHS compliant, as defined by Directive 2015/863/EU (RoHS 3) of the European Parliament and of the Council of 31 March 2015 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

All manufacturing is done using RoHS-compliant components and lead-free soldering.

REACH Compliance

AlazarTech verifies its supply chain against the latest REACH requirements. A compliance statement is usually available within 6 months of release of the European Chemicals Agency (ECHA) updated substance of very high concern (SVHC), Authorizations, and Restrictions lists.

EC Conformity

ATS9364 conforms to the following standards:

Electromagnetic Emissions:

CISPR 32:2015/AMD1:2019 /

EN 55032:2015/A11:2020 (Class A):

Multimedia Equipment (MME) Radio disturbance characteristics. Limits and method of measurement: EN 61000-3-2:2014, EN 61000-3-3:2013.

Electromagnetic Immunity:

EN 55035:2017/A11:2020:

Multimedia Equipment (MME) Immunity characteristics. Limits and methods of measurement: EN 61000-4-2:2009, EN 61000-4-4:2012, EN 61000-4-5:2006, EN 61000-4-6:2009, EN 61000-4-11:2004.

Safety:

IEC 62368-1:2014 / EN 62368-1:2014+A11:2017: Audio/video, information and communication technology equipment - Part 1: Safety requirements.

ATS9364 also follows the provisions of the following directives: 2014/35/EU (Low Voltage Equipment); 2014/30/EU (Electromagnetic Compatibility).

FCC & ICES-003 Compliance

ATS9364 has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15, subpart B of the FCC Rules, and the Canadian Interference-Causing Equipment Standard ICES-003 issue 7 October 2020.

System Requirements

Personal computer with at least one free x8 or x16 PCI Express slot (must be Gen 3 slot to achieve full data throughput), 16 GB RAM, 100 MB of free hard disk space, SVGA display adaptor and monitor with at least a 1024 x 768 resolution.

Power Requirements

+12 V 1.6 A, typical +3.3 V 0.25 A, typical

Physical

Size Single slot, half length PCI Express

card (4.377 inches x 6.5 inches excluding the connectors protruding from the front panel)

Weight 250 g

I/O Connectors

ECLK, CH A, CH B,
TRIG IN, AUX I/O SMA female connector

Environmental

Operating temperature 0 to 55 degrees Celsius
Storage temperature -20 to 70 degrees Celsius
Relative humidity 5 to 95%, non-condensing

Acquisition System

Resolution 12 bits

Bandwidth (-3 dB)

DC-coupled, 50Ω Standard DC - 500 MHzNumber of channels 2, simultaneously sampled

Maximum Sample Rate 1 GS/s single shot

Minimum Sample Rate 1 MS/s single shot for internal

clocking

Full Scale Input ranges

50 Ω input impedance: ±400 mV

DC accuracy $\pm 2\%$ of full scale in all ranges

Input coupling DC Input impedance 50 Ω ±1%

Absolute maximum input

50 Ω

±4 V (DC + peak AC for CH A, CH B and TRIG IN only without

external attenuation)

Acquisition Memory System

Acquisition Memory/ch 512 Million samples per channel

Record Length Software-selectable with 128-point resolution. Record length must be

a minimum of 512 points. There is no upper limit on the maximum

record length.

Number of Records Software selectable from a

minimum of 1 to a maximum of infinite number of records

Pre-trigger depth From 0 to 8176 for single channel From 0 to 4088 for dual channel

Post-trigger depth Record Length – Pre-Trigger Depth

Timebase System

Timebase options Internal Clock or

External Clock (Optional)

Internal Clock accuracy ±2 ppm

Internal Sample Rates 1 GS/s, 800 MS/s, 500 MS/s,

200 MS/s, 100 MS/s, 50 MS/s, 20 MS/s, 10 MS/s, 5 MS/s, 2 MS/s,

1 MS/s

Dynamic Parameters

Typical values measured on the 400 mV range of CH A of a randomly selected ATS9364. Input signal was provided by an SRS SG384 signal generator, followed by a 9-pole bandpass filter. Output amplitude was set to approximately 95% of the full scale input.

	50MHz at -0.5 dBFS ¹	100MHz at -0.5 dBFS ²	200MHz at -0.5 dBFS ³
SNR	57.25 dB	59.50 dB	56.62 dB
SFDR	59.65 dBc	59.03 dBc	57.40 dBc
SINAD	57.01 dB	57.25 dB	56.35 dB

¹Bandpass filter Q36T-50M-5M-50-720BMF; 49.9 MHz frequency ²Bandpass filter Q36T-100M-10M-50-720BMF; 99.9 MHz frequency ³Bandpass filter Q36T-200M-20M-50-720BMF; 199.9 MHz frequency

Note that these dynamic parameters may vary from one unit to another, with input frequency and with the full scale input range selected.

Optional ECLK (External Clock) Input

Signal Level 500 mV_{P-P} to 2 V_{P-P}

Input impedance 50 Ω Input coupling AC

Maximum frequency

for Fast External Clock 1 GHz

Minimum frequency

for Fast External Clock 300 MHz

100 MHz for Screened ECLK boards

Sampling Edge Rising only

Optional 10 MHz Reference PLL Input

Signal Level 500 mV_{P-P} to 2 V_{P-P}

 $\begin{array}{ll} \text{Input impedance} & 50 \ \Omega \\ \\ \text{Input Coupling} & \text{AC coupled} \\ \\ \text{Input Frequency} & 10 \ \text{MHz} \pm 0.1 \ \text{MHz} \end{array}$

Maximum frequency 10.1 MHz
Minimum frequency 9.9 MHz

Sampling Clock Freq. 1 GHz, 500 MHz, or 400 MHz

Triggering System

Mode Edge triggering with hysteresis

Comparator Type Digital comparators for internal (CH A, CH B) triggering and analog comparators for TRIG IN

(External) triggering

Number of Trigger Engines 2

Trigger Engine Combination Engine J, engine K, J OR K,

software selectable

CH A, CH B, EXT, Software or None, Trigger Engine Source

independently software selectable for each of the two Trigger Engines

Hysteresis ±5% of full scale input, typical Trigger sensitivity ±10% of full scale input range.

This implies that the trigger system may not trigger reliably if the input

has an amplitude less than ±10% of full scale input range selected

±5%, typical, of full scale input Trigger level accuracy

range of the selected trigger

source

Bandwidth 250 MHz

Trigger Delay Software selectable from 0 to 9,999,999 sampling clock cycles

Trigger Timeout Software selectable with a 10 μs

> resolution. Maximum settable value is 3,600 seconds. Can also be disabled to wait indefinitely for

a trigger event

TRIG IN (External Trigger) Input

3.3 V TTL Input type Input coupling DC only TTL input impedance 6.6 k Ω ±10%

TTL min. pulse width 32 ADC sampling clocks

TTL min. pulse amplitude 2 Volts

-0.7 V to +5.5 V TTL absolute max. input

Auxiliary I/O (AUX I/O)

Signal direction Input or Output, software select-

able. Trigger Output by default

Trigger Output, Output types:

Pacer (programmable clock) Output,

Software-controlled Digital Output

Input types: Trigger Enable

Software-readable Digital Input

Output

Amplitude: 5 Volt TTL

Synchronization: Synchronized to a clock derived

from the ADC sampling clock. Divide-by-4 clock (dual channel mode) or divide-by-8 clock (single

channel mode)

Input

Amplitude: 3.3 Volt TTL (5 Volt-compliant)

Input coupling: DC.

Materials Supplied

ATS9364 PCI Express Card

ATS9364 Install Disk on USB flash drive

Certification and Compliances

RoHS 3 (Directive 2015/863/EU) Compliance

REACH Compliance

CE Marking — EC Conformity

FCC Part 15 Class A / ICES-003 Class A Compliance

All specifications are subject to change without notice

ORDERING INFORMATION

ATS9364 ATS9364-001

ATS9364: External Clock Upgrade ATS9364-005

ATS9364: Screened External Clock Upgrade ATS9364-006

ATS9364: On-FPGA FFT ATS9364-010

ATS9364-061 ATS9364: One Year Extended Warranty

ATS-SDK purchased with a digitizer board ATS-SDK

or ATS-GPU: License + 1 Year Subscription (Supports C/C++, Python, MATLAB, and LabVIEW)

ATS-SDK purchased separately: ATS-SDK-WOD

License + 1 Year Subscription + 5 hours of

technical support

(Supports C/C++, Python, MATLAB, and LabVIEW)

ATS-GPU-BASE: GPU Streaming Library ATSGPU-001

License + 1 Year Subscription

ATS-GPU-OCT: Signal Processing Library ATSGPU-101

License + 1 Year Subscription (requires ATSGPU-001)

ATS-GPU-NUFFT: ATS-GPU-OCT Extension ATSGPU-201

for fixed-frequency sampled data License + 1 Year Subscription (requires ATSGPU-001 & ATSGPU-101)

SUPPORT-HR5 5 Hours of technical support

† AlazarDSO, AlazarTech, and AlazarTech ATS are registered trademarks of Alazar Technologies Inc.

MATLAB is a trademark and/or registered trademark of The MathWorks, Inc. LabVIEW is a trademark and/or registered trademark of National Instruments. Windows and Windows Server are trademarks and/or registered trademarks of Microsoft Corporation in the U.S. and/or other countries.

Linux is a registered trademark of Linus Torvalds.

ASUS is either a US registered trademark or trademark of ASUSTEK Computer Inc. in the United States and/or other countries.

RHEL is a registered trademark of Red Hat, Inc. in the United States and other countries.

CUDA, NVIDIA, and Quadro are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and/or other countries. All other trademarks are the property of their respective owners.

Manufactured By:

Alazar Technologies, Inc.

6600 TRANS-CANADA HIGHWAY, SUITE 310 POINTE-CLAIRE, QC, CANADA H9R 4S2

TOLL FREE: 1-877-7-ALAZAR OR 1-877-725-2927 TEL: (514) 426-4899 FAX: (514) 426-2723

F-MAIL: sales@alazartech.com

DATASHEET REVISION HISTORY

Changes from version 1.0A (Nov 2022) to version 1.0B	Section, Page
Added section for new upgrade: On-FPGA FFT Opt	ional FPGA-Based FFT Processing, pg. 2
Added new Boxcar averaging example kernel available with ATS-GPU-BASE 23.1.0-	+ ATS-GPU, pg. 6
Added section for REACH Compliance	REACH Compliance, pg. 7
Corrected minimum record length from 256 to 512 points	Acquisition Memory System, pg. 8
Added REACH Compliance to list of Certification and Compliances	Certification and Compliances, pg. 9
Added order information for new upgrade: On-FPGA FFT	Ordering Information, pg. 9
Changes from version 1.0 (Sept 2022) to version 1.0A	Section, Page
Updated product photo	pg. 1
Added new section to specify default output data format is unsigned binary and that it can be changed to signed binary via an API call.	Output Data Format, pg. 3
Removed duplicated text	10 MHz Reference Clock, pg. 4
Separate description for Linux SDK to detail supported programming languages	Software Development Kits, pg. 6
Updated download link for the Linux driver and associated library, and added note: ATS-SDK example programs are only provided for Python and C++	Linux Support, pg. 7
Added section	EC Conformity, pg. 7
Added section	FCC & ICES-003 Compliance, pg. 7
Added EC Conformity and FCC / ICES-003 Class A Compliance	Certification and Compliances, pg. 9