ATS-GPU-NUFFT

Version 25.1.0
April 17, 2025

N AlazarTech

1 License Agreement

1.1 Important.
1.2 Ownership
1.3 Rights.
1.4 Limited Warranty

2 Introduction

3 Prerequisites
3.1 System requirements

4 ATS-GPU-NUFFT

41 Usage . . . v v v v v i e e e e e
4.2 APIReference

5.1 APIReference

5 ATS-CUDA-NUFFT
Index

CONTENTS

o—
o—

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

Note: This is the documentation for AlazarTech’s ATS-GPU version 25.1.0. Please visit our docu-
mentation homepage to find documentation for other versions or products.

©2008-2025 Alazar Technologies Inc. 1

https://docs.alazartech.com
https://docs.alazartech.com

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

2 ©2008-2025 Alazar Technologies Inc.

CHAPTER
ONE

LICENSE AGREEMENT

Copyright (¢) @COPYRIGHT DATE@ Alazar Technologies, Inc.

1.1 Important

CAREFULLY READ THIS SOFTWARE LICENSE AGREEMENT. BY CLICKING THE APPLICABLE BUT-
TON TO COMPLETE THE INSTALLATION PROCESS, YOU AGREE TO BE BOUND BY THE TERMS
OF THIS AGREEMENT. IF YOU DO NOT WISH TO BECOME A PARTY TO THIS AGREEMENT AND
BE BOUND BY ITS TERMS AND CONDITIONS, DO NOT INSTALL OR USE THE SOFTWARE, AND
RETURN THE SOFTWARE (WITH ANY ACCOMPANYING MEDIA) WITHIN THIRTY (30) DAYS
OF RECEIPT. ALL RETURNS TO ALAZAR TECHNOLOGIES INC. (“ALAZARTECH”) WILL BE SUB-
JECT TO ALAZARTECH’S THEN-CURRENT POLICY. IF YOU ARE ACCEPTING THESE TERMS ON
BEHALF OF AN ENTITY, YOU AGREE THAT YOU HAVE AUTHORITY TO BIND THE ENTITY TO
THESE TERMS.

1.2 Ownership

AlazarTech retains the ownership of ATS-GPU software (“Software”). It is licensed to you for use
under the following conditions:

1.2.1 Grant of License

You may only concurrently use the Software on the computers that have an AlazarTech waveform
digitizer card plugged in (for example, if you have purchased one AlazarTech card, you have a
license for one concurrent usage). If the number of users of the Software exceeds the number of
AlazarTech cards you have purchased, you must have a reasonable process in place to assure that
the number of persons concurrently using the Software does not exceed the number of AlazarTech
cards purchased.

This license is non-transferable.

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

1.2.2 Restrictions

You may not copy the documentation or Software except as described in the installation section of
the Software manual. You may not distribute, rent, sub-lease or lease the Software or documenta-
tion, including translating or decomposing. You may not modify, reverse-engineer, decompile, or
disassemble any part of the Software or documentation, or produce any derivative work other than
software applications that communicate with AlazarTech hardware using the published Application
Programming Interface (API).

You may not remove, block, or modify any titles, logos, trademarks, copyright and/or patent no-
tices, digital watermarks, disclaimers, or other legal notices that are included in the Software.

1.2.3 Termination

This license and your right to use this Software automatically terminates if you fail to comply with
any provision of this license agreement.

1.3 Rights

AlazarTech retains all rights not expressly granted. Nothing in this agreement constitutes a waiver
of AlazarTech’s rights under the Canadian and U.S. copyright laws or any other Federal or State
law.

1.4 Limited Warranty

Although AlazarTech has tested the Software and reviewed the documentation, ALAZARTECH
MAKES NO WARRANTY OF REPRESENTATION, EITHER EXPRESSED OR IMPLIED, WITH RE-
SPECT TO THIS SOFTWARE OR DOCUMENTATION, ITS QUALITY, PERFORMANCE, MER-
CHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS SOFTWARE
AND DOCUMENTATION IS LICENSED “as is” AND YOU, THE LICENSEE, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE. IN NO EVENT WILL ALAZARTECH BE
LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THIS SOFTWARE OR DOCUMENTATION, even if
advised of the possibility of such damages. In particular, AlazarTech shall have no liability for any
data acquired, stored or processed with this Software, including the costs of recovering such data.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESSED OR IMPLIED. No AlazarTech dealer, agent or employee
is authorized to make any modifications or additions to this warranty.

Information in this document is subject to change without notice and does not represent a commit-
ment on the part of AlazarTech. The Software described in this document is furnished under this
license agreement. The Software may be used or copied only in accordance with the terms of the
agreement.

4 ©2008-2025 Alazar Technologies Inc.

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

Some jurisdictions do not allow the exclusion of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty
gives you specific legal rights, and you may also have other rights, which vary from jurisdiction to
jurisdiction.

©2008-2025 Alazar Technologies Inc. 5

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

6 ©2008-2025 Alazar Technologies Inc.

CHAPTER
TWO

INTRODUCTION

ATS-GPU-NUFFT provides a framework to allow real-time, non-uniform Fourier transform process-
ing from AlazarTech PCle digitizers on a CUDA-compatible GPU.

ATS-GPU-NUFFT internally calls ATS-CUDA-NUFFT, which is a low-level library that performs all
the necessary operations to perform the non-uniform Fourier Transform. ATS-CUDA-NUFFT is de-
scribed later in this guide in the section ATS-CUDA-NUFFT.

This document assumes that the reader is familiar with ATS-SDK, the standard interface for pro-
gramming AlazarTech digitizers. Having a copy of the ATS-SDK manual available can be helpful,
since many references to ATSApi functions are done here. The latest version of the ATS-SDK manual
can be downloaded free of charge from AlazarTech’s website.

http://www.alazartech.com

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

8 ©2008-2025 Alazar Technologies Inc.

CHAPTER
THREE

PREREQUISITES

3.1 System requirements

This software requires a PC with a CUDA-enabled GPU, and sufficient CPU resources to supply
data to the GPU at the desired data acquisition rate. It also requires a working installation of the
same version of ATS-GPU-BASE and ATS-GPU-OCT. It was tested with a GeForce RTX 2080 Ti and
a Quadro P5000. DDR4 memory and a modern chipset (X99, X299) will greatly improve transfer
speed and overall performance.

Supported operating systems
Windows and Linux operating systems are supported. Please verify that your Linux distribu-
tion is supported by NVIDIA which supplies the CUDA toolkit required to use ATS-GPU.

Compiler support
CMake is required to build C/C++ code. CMake files are provided. On Linux, a C++11
compiler is required to build the library. On older Red Hat distributions, a devtoolset can
be obtained to use a more recent version of gcc that supports C++11. NVCC is required to
compile the example code, this compiler is included with CUDA toolkit.

CUDA driver requirements
In order to use ATS-GPU, you must install the appropriate driver for your CUDA-enabled GPU.
Drivers can be downloaded at https://www.nvidia.com/Download/index.aspx.

Note: Under Windows operating systems, dynamic link libraries releated to ATS-GPU-NUFFT
are installed by default in %WINDIR%System32. For applications to link approripately to them,
%WINDIR%System32 must be added to the Windows PATH Environment Variable.

http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements
https://www.nvidia.com/Download/index.aspx

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

10 ©2008-2025 Alazar Technologies Inc.

CHAPTER
FOUR

ATS-GPU-NUFFT

ATS-GPU-NUFFT leverages ATS-GPU-BASE to transfer data from an ATS PCle digitizer to a GPU in
a highly efficient manner. It then takes care of doing NUFFT processing on the data before sending
it back to the host computer’s RAM. ATS-GPU-NUFFT also relies on ATS-GPU-OCT for standard FFT
processing stages.

Sample programs installation path
e Windows: “C:\AlazarTech\ATS-GPU\25.1.0\nufft”
e Linux: “/usr/local/AlazarTech/ATS-GPU/25.1.0/nufft”

4.1 Usage

ATS-GPU-NUFFT acquisitions are very similar to standard ATSApi acquisitions. Only the differences
are listed here for brevity.

The central function of the ATS-GPU-NUFFT interface is ATS_GPU_NUFFT_Setup(). This func-
tion calls its ATS-GPU-BASE counterpart ATS_GPU_Setup() internally, which in turns calls
AlazarBeforeAsyncRead(). It takes a few extra parameters:

* OCTFlags: Used to define which data type, such as amplitude and phase, to obtain from the
acquisition.

* FFTLength: This is used to select the length of the Fourier transform done on the GPU. This
value should be a power of two for efficiency, and it also must be equal to or larger than the
record length.

* NUFFTFlags: Used to define the source of the linearization function. Linearization can either
be user defined by selecting ATS_GPU_NUFFT_PRESET_LINEARIZATION or be determined from a
K-clock signal when ATS_GPU_NUFFT_KCLOCK_LINEARIZATION is used.

rc = ATS_GPU_NUFFT_Setup(
boardHandle, channelMask, -(int) preTriggerSamples,
samplesPerRecordPerChannel, recordsPerBuffer,
buffersPerAcquisition * recordsPerBuffer, autoDMAFlags,
OCTOptions, FFTLength, NUFFTFlags, NULL, &fftBytesPerBuffer);
// Error handling

11

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

If NUFFTFlags is setup with ATS_GPU_NUFFT_KCLOCK_LINEARIZATION, the channelMask must contain
CHANNEL_A and at least one other active channel. With this flag, ATS-GPU-NUFFT will determine
the linearization function for each record from the k-clock signal acquired on CHANNEL_A and use it
to perform non-uniform FFT on every other active channel.

If NUFFTFlags was setup with ATS_GPU_NUFFT_PRESET_LINEARIZATION, the user is required to specify
a precalibrated linearization function. This linearization function will be used to perform non-
uniform FFT on every record of every active channel.

int precalibratedFunctionLength = 1000;

std: :vector<float> precalibratedFunction(precalibratedFunctionLength);

for (int i = 0; i < precalibratedFunction.size(); it++) {

precalibratedFunction[i] = i;

3

rc = ATS_GPU_NUFFT_SetlLinearizationFunction(
boardhandle, precalibratedFunction,
&precalibratedFunction[0]);

// Error handling

Here, we generated a linear linearization function. Setting a linear precalibrated function repre-
sents a signal that is sampled linearly in k-space, thus equivalent to applying regular FFT.

The precalibrated linearization function can have any length as ATS-GPU-NUFFT will internally
take care of re-sampling the function to a length equal to samplesPerRecordPerChannel. ATS-
GPU-NUFFT will also normalize the function. The precalibrated linearization can therefore have
any start and end values. The values of the precalibrated linearization function must always be
increasing such as x[iJ]<x[i+1].

We then choose the window function applied to the acquired data before the FFT pro-
cessing phase. The most common usage pattern is to first generate a window func-
tion using ATS_GPU_OCT_GenerateWindowFunction(), then to download it to the board using
ATS_GPU_NUFFT_SetWindowFunction(). It is possible however to use entirely custom window func-
tions instead of the ones generated by the API. It is also possible to use complex window functions
by way of downloading two arrays of points: the first for the real part of the window and the other
for the imaginary one.

rc = ATS_GPU_OCT_GenerateWindowFunction(
FFT_WINDOW_HANNING, &window[0],
samplesPerRecordPerChannel);

// Error handling

rc = ATS_GPU_NUFFT_SetWindowFunction(
boardHandle, samplesPerRecordPerChannel,
&window[@], NULL);

// Error handling

We then allocate memory on the GPU and CPU for data to be transferred to, and we post those
buffers to the board. For this purpose, we use ATS_GPU_NUFFT_AllocBuffer(). This function allo-
cates buffers on the GPU, and sets up all the intermediary states necessary for ATS-GPU-NUFFT to
successfully transfer data. It also allocates data on the CPU to receive the processed data.

12 ©2008-2025 Alazar Technologies Inc.

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

for (int i = 0; i < numberOfBuffers; i++)

{
buffers[i] = (float*) ATS_GPU_NUFFT_AllocBuffer(
boardHandle, bytesPerResultBuffer, NULL);
rc = ATS_GPU_NUFFT_PostBuffer(
boardHandle, buffers[i], bytesPerResultBuffer);
// Error handling
3

We can then start the acquisition with ATS_GPU_NUFFT_StartCapture(). Once the acquisition is
started, ATS_GPU_NUFFT_GetBuffer() must be called as often as possible to retrieve a buffer con-
taining processed data on the CPU. The data can then be used by the calling application. When no
longer needed, the buffer needs to be posted back.

for (size_t i; i < buffers_per_acquisition; i++)
{
rc = ATS_GPU_NUFFT_GetBuffer(
boardHandle, buffers[bufferIndex],timeout_ms);
// Error handling

// TODO: Process sample data in this buffer.

rc = ATS_GPU_NUFFT_PostBuffer(
boardHandle, buffers[bufferIndex], bytesPerResultBuffer);
// Error handling

b

When acquisition is complete, ATS_GPU_NUFFT_AbortCapture() must be called. Buffers allocated
with ATS_GPU_NUFFT_AllocBuffer() should then be freed with ATS_GPU_NUFFT_FreeBuffer().

ATS_GPU_NUFFT_AbortCapture(boardHandle);

if (gpuFile != NULL)
fclose(gpuFile);

// Free buffers

for (int i = 0; i < numberOfBuffers; i++) {
ATS_GPU_NUFFT_FreeBuffer(boardHandle, buffers[i]);

}

©2008-2025 Alazar Technologies Inc. 13

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

4.1.1 LabVIEW Programming

LabVIEW applications must use the managed interface which allows the API to allocate and
manage a list of buffers available to be filled by the board. These applications should
call ATS_GPU_NUFFT_Setup() with the AMDA ALLOC BUFFERS option selected in the “autoD-
MAFlags” parameter. This option will cause the API to allocate and manage a list of buffers
available to be filled by the board. It is therefore not necessary for the application to
call ATS_GPU_NUFFT_AllocBuffer() or ATS_GPU_NUFFT_FreeBuffer(). The application must call
ATS_GPU_NUFFT_ManageGetBuffer() to wait for a buffer to be filled. When the board receives suffi-
cient trigger events to fill a buffer, the API will copy the data from the internal buffer to the user-
supplied buffer. ATS_GPU_NUFFT_ManageGetBuffer() internally calls ATS_GPU_NUFFT_GetBuffer()
and ATS_GPU_NUFFT_PostBuffer() so applcation should not use these API calls when using the
managed interface.

LabVIEW users might find it convenient to edit the VI search paths to locate the appropriate subVIs
for the different ATS-GPU packages and ATS-SDK. The VI Search Path can be set in the “Tools” menu
under “Options”, in the “Path” category. Then select the “VI Search Path” from the drop down list.
By unselecting “Use default” custom VI search paths can be added.

4.2 API Reference

Note: Errors from ATS-GPU-NUFFT will be logged in ATS GPU.log. Relevant information about
the error will be logged here and can be useful for debugging. For Windows users log file is located
in % TEMP%. For Linux users log file is located in /tmp/.

enum ATS_GPU_NUFFT_OPTIONS

Linearization = source specifier. If ATS GPU NUFFT KLCOCK LINEARIZATION
is used, k-clock signal must be connected to CHANNEL A. If
ATS GPU NUFFT PRESET LINEARIZATION is used, a linearization calibration function
must be set using ATS GPU NUFFT _SetLinearizationWindowFunction(). This is used in
ATS _GPU NUFFT Setup().

Values:

enumerator ATS_GPU_NUFFT_PRESET_LINEARIZATION

enumerator ATS_GPU_NUFFT_KCLOCK_LINEARIZATION

14 ©2008-2025 Alazar Technologies Inc.

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_GPU_NUFFT_AbortCapture (HANDLE boardHandle)
Stops the acquisition.

Aborts an acquisition, stops data processing, and releases allocated resources.

Parameters
boardHandle — Handle to the board

Returns
ApiSuccess

©2008-2025 Alazar Technologies Inc. 15

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

void *ATS_GPU_NUFFT_AllocBuffer (HANDLE boardHandle, U32 bytesPerBuffer, void *reserved)
Allocates page-aligned pinned memory for ATS and GPU boards.
This function must be called after ATS GPU _NUFFT Setup() to perform the necessary memory
allocations. This function returns a CPU result buffer pointer.
Parameters
* boardHandle — Handle to the board

* bytesPerBuffer — Total number of bytes to allocate per buffer

* reserved — Pass NULL.

16 ©2008-2025 Alazar Technologies Inc.

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_GPU_NUFFT_EnableVerificationMode (BOOL enable, U32 boardType)
Enable verification mode to supply already acquired data.

Parameters
¢ enable — Pass 1 to enable

* boardType — Board identifier used to perform the acquisition.

©2008-2025 Alazar Technologies Inc. 17

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_GPU_NUFFT_FreeBuffer (HANDLE boardHandle, void *buffer)
Free buffers allocated with ATS GPU NUFFT AllocBuffer();.

Parameters
¢ boardHandle — Handle to the board
* buffer — Buffer pointer allocated by ATS GPU NUFFT AllocBuffer()

18 ©2008-2025 Alazar Technologies Inc.

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_GPU_NUFFT_GetBuffer (HANDLE boardHandle, void *buffer, U32
timeout_ms)

Get processed buffer.

This function must be called at average rate that is equal to or greater than the rate at which
DMA buffers complete. This function returns the GPU-processed buffer.

Parameters
¢ boardHandle — Handle to the board
¢ buffer — Pointer to the buffer

* timeout_ms — Time the board will wait for a trigger before throwing an
error.

Returns
ApiSuccess if the board received sufficient triggers to fill a DMA buffer.

Returns
ApiNotInitialized if ATS GPU NUFFT StartCapture() was not called before
calling this function, or it was called and failed.

Returns
ApilInvalidHandle if the boardHandle parameter is not valid.

Returns
ApiBufferOverflow if the board filled all the available DMA buffers and its
on-board memory. This may happen if the acquisition rate exceeds the bus
bandwidth or the GPU processing bandwidth.

Returns
ApiWaitTimeout if the timeout interval expired before the board received a
sufficient number of triggers to fill a buffer.

Returns
ApiFailed if a system or internal error occured.

©2008-2025 Alazar Technologies Inc. 19

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_GPU_NUFFT_GetVersion(U8 *major, U8 *minor, U8 *revision)
Get ATS-GPU-NUFFT version number.

Parameters
* major — ATS-GPU-NUFFT major version number.
* minor — ATS-GPU-NUFFT minor version number.

¢ revision — ATS-GPU-NUFFT revision number.

20 ©2008-2025 Alazar Technologies Inc.

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_GPU_NUFFT_PostBuffer (HANDLE boardHandle, void *buffer, U32
bytesPerBuffer)

Signal the library a particular buffer can be used for data transfer.

This function is the equivalent of AlazarPostAsyncBuffer for ATS-GPU-NUFFT. Buffers posted
must have previously been allocated with ATS GPU NUFFT AllocBuffer().

Parameters
* boardHandle — Handle to the board
* buffer — Pointer to a previously allocated buffer

* bytesPerBuffer — Size in bytes of the buffer, must be the same size as setup
for the acquisition.

©2008-2025 Alazar Technologies Inc. 21

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_GPU_NUFFT_ManageGetBuffer (HANDLE boardHandle, void *buffer, U32
bytesToCopy, U32 timeout_ms)

Query a buffer through the managed DMA buffer API. For LabVIEW programmers view Lab-
VIEW Programming section.

Parameters
* boardHandle — Handle to the board
* buffer — Pointer to a user-allocated buffer to receive data
* bytesToCopy — Number of bytes to copy to the user buffer

* timeout_ms — Maximum time to wait for data to be ready to be copied to
buffer before returning ApiWaitTimeout.

22 ©2008-2025 Alazar Technologies Inc.

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_GPU_NUFFT_SetBuffer (void *datalnputBuffer, void *CPUResultBuffer, U32
samplesPerBuffer)

Supply a buffer for verification mode.
Parameters
* dataInputBuffer — Pointer to data buffer to be processed
* CPUResultBuffer — Pointer to data buffer to contain result data

* samplesPerBuffer — Size in samples of the buffer

©2008-2025 Alazar Technologies Inc. 23

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_GPU_NUFFT_SetLinearizationFunction(HANDLE boardHandle, U32
precalibratedFunctionLength, float
*precalibratedFunction)
Set linearization function used in NUFFT calculation. This call should be made if
ATS _GPU_NUFFT Setup was called using ATS GPU NUFFT PRESET LINEARIZATION as a
parameter for NUFFTFlags.

Parameters
¢ boardHandle — Handle to the board

* precalibratedFunctionLength — Length of the linearization function, can
be different from samplesPerRecordPerChannel.

* precalibratedFunction — Pointer to array of size precalibratedFunction-
Length that contains the linearization function. Passing null is equivalent
to passing a linearly spaced linearization grid.

24 ©2008-2025 Alazar Technologies Inc.

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_GPU_NUFFT_SetWindowFunction(HANDLE boardHandle, U32
samplesPerRecord, float *realWindowArray,
float *imagWindowArray)

Set window function used in FFT calculation.
Parameters
¢ boardHandle — Handle to the board

* samplesPerRecord — Length of the window, equal to the number of samples
per FFT.

* realWindowArray — Pointer to array of size samplesPerRecord that contains
the real part of the window. Passing null is equivalent to passing an array
filled with ones.

* imagWindowArray — Pointer to array of size samplesPerRecord that contains
the imaginary part of the window. Passing null is equivalent to passing an
array filled with zeros.

©2008-2025 Alazar Technologies Inc. 25

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_GPU_NUFFT_Setup (HANDLE boardHandle, U32 channelSelect, long

transferOffset, U32 samplesPerFFT, U32 FFTsPerBulffer,
U32 FFTsPerAcquisition, U32 autoDMAFlags, U32
OCTFlags, U32 FFTLength, U32 NUFFTFlags, void
*reserved, U32 *bytesPerResultBuffer)

Prepares the ATS board and GPU for acquisition.

This function calls ATS_GPU_Setup() internally and most parameters are passed directly to
it. In addition, it sets up the GPU for DMA transfers and receives options specific to NUFFT

processing.

Parameters

boardHandle — Handle to the board. Set to NULL for data validation mode.
channelSelect — Channel mask with each channel identifier OR’d.
transferOffset — Pass a negative integer for pretrigger samples.
samplesPerFFT — Number of samples in a record or transfer.

FFTsPerBuffer — Number of records in a buffer, 1 for triggered streaming
and continuous streaming modes.

FFTsPerAcquisition — In this version of the library, it is required to
pass Ox7FFFFFFF to this parameter, which stands for an infinite acqui-
sition. It is possible to interrupt the acquisition at any time using
ATS_GPU_NUFFT AbortCapture()

autoDMAFlags — ATSApi flags for AlazarBeforeAsyncRead

OCTFlags — Defines the types of data outputs to be obtained from the
NUFFT acquisition. This parameter can receive one or more elements of
ATS GPU_OCT_OPTIONS and ATS GPU PSOCT OPTIONS, or’ed with the
binary OR operator.

FFTLength — Length of FFT, should be a power of 2.

NUFFTFlags — Determines source of linearization. This parameter can re-
ceive one element of ATS GPU _NUFFT_OPTIONS.

reserved — Pass NULL

bytesPerResultBuffer — Returns the size of a result buffer

26

©2008-2025 Alazar Technologies Inc.

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_GPU_NUFFT_StartCapture (HANDLE boardHandle)
Start the acquisition.

Use this function in replacement of AlazarStartCapture(). It starts the acquisition. The appli-
cation must be ready to call ATS GPU NUFFT GetBuffer() to prevent data overflows

Parameters
boardHandle — Handle to the board

©2008-2025 Alazar Technologies Inc. 27

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

28 ©2008-2025 Alazar Technologies Inc.

CHAPTER
FIVE

ATS-CUDA-NUFFT

ATS-CUDA-NUFFT provides a framework to allow non-uniform data processing on a CUDA-enabled
GPU. ATS-CUDA-NUFFT internally calls ATS-CUDA and ATS-CUDA-OCT and should be used with
ATS-CUDA for buffer and stream manipulation. ATS-CUDA-NUFFT requires an AlazarTech board
on the system in order to be used.

5.1 API Reference

Note: Errors from ATS-CUDA-NUFFT will be logged in ATS _GPU.log. Relevant information about
the error will be logged here and can be useful for debugging. For Windows users log file is located
in % TEMP%. For Linux users log file is located in /tmp/.

atsNuFFTPlan *ATS_CUDA_NUFFT_CreateNuFFTPlan(U32 FFTLength, U32
samplesPerRecordPerChannel, U32
FFTsPerBuffer, cudaStream_t stream)

Creates a non-uniform FFT plan and associates it with a CUDA stream. A non-uniform FFT
plan contains all the data and GPU resources necessary to perform a non-uniform fast Fourier
transform.

This function is used to allocate resources on a GPU and configure a GPU kernel to perform
non-uniform FFT processing. It also associates the newly created non-uniform FFT plan with
a CUDA stream. All kernels executed with this plan are to be run on this stream.

Parameters
* FFTLength — Length of FFT, should be a power of 2 for performance.
* samplesPerRecordPerChannel — Number of samples in a record.
* FFTsPerBuffer — Number of FFTs to perform per buffer.
* stream — The CUDA stream to run the FFT plan with.

Returns
This function returns a pointer to the created non-uniform FFT plan.

29

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_CUDA_NUFFT_NuFFT (atsNuFFTPlan *NuFFTPlan, void *GPUBaseBuffer, void
*GPUNUFFTOut, void *GPULinearizationBuffer,
ATS CUDA Input DataType inputDataType, void
*GPUWindow)

Launches a kernel on the GPU to perform the non-uniform Fast Fourier Transform.
Parameters

* NuFFTPlan - Pointer to a non-uniform FFT plan created with
ATS CUDA NUFFT CreateNuFFTPlan().

* GPUBaseBuffer — Pointer to a GPU buffer on which to apply NuFFT kernel.
This buffer should have 8 bits, 16 bits or float32 data packing and have
de-interleaved channels.

* GPUNuFFTOut — Pointer to a GPU NuFFT result buffer. Output buffer has
complex float32 precision.

* GPULinearizationBuffer — Pointer to a GPU linearization buffer with
float32 precision. = Must have the same samplesPerRecordPerChan-
nel and same recordsPerBuffer as GPUBaseBuffer. Can be generated
from ATS CUDA NUFFT GetLinearizationFromPrecalibratedFunction() or
ATS CUDA NUFFT GetLinearizationFromKclock()

* inputDataType. — Data type of GPUBaseBuffer. This parameter must re-
ceive one element of ATS CUDA Input DataType.

e GPUWindow - Pointer to a GPU window buffer allocated with
ATS CUDA OCT GenerateGPUWindowFunction()

30 ©2008-2025 Alazar Technologies Inc.

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_CUDA_NUFFT_DestroyNuFFTPlan(atsNuFFTPlan *NuFFTPlan)
Destroy a non-uniform plan.

Frees all GPU resources associated with a non-uniform FFT plan.

Parameters
NuFFTPlan — Pointer to the non-uniform FFT plan to be destroyed.

©2008-2025 Alazar Technologies Inc. 31

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

atsLinearizationPlan *ATS_CUDA_NUFFT_CreateLinearizationPlan(U32

samplesPerRecordPerChannel,
U32 recordsPerBuffer,
ATS_CUDA_Input_DataType
inputDataType, cudaStream_t
stream)

Creates a linearization plan and associates it with a CUDA stream. A linearization plan con-
tains all the data and GPU resources necessary to compute the linearization function from a
k-clock signal.

This function is used to allocate the required resources and configure a GPU kernel to per-
form the necessary processing to obtain a linearization buffer from a k-clock signal. It also
associates the newly created linearization plan with a CUDA stream. All kernels executed
with this plan are to be run on this stream.

Parameters
* samplesPerRecordPerChannel — Number of samples in each k-clock record.
* recordsPerBuffer — Number of records in the k-clock signal.

* inputDataType. — Data type of the k-clock signal. This parameter must
receive one element of ATS CUDA Input DataType.

* stream — The CUDA stream to run the linearization plan with.

Returns
This function returns a pointer to the created linearization plan.

32

©2008-2025 Alazar Technologies Inc.

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_CUDA_NUFFT_GetLinearizationFromKclock(atsLinearizationPlan *linPlan,
void *pKclock, void
*GPULinearizationBuffer)

Launches a kernel on the GPU to get the linearization function from a k-clock signal.
Parameters

* linPlan - Pointer to a linearization plan created with
ATS CUDA NUFFT CreateLinearizationPlan().

* pKclock - Pointer to a GPU buffer containing k-clock
data. K-clock buffer data type must be as specified in
ATS _CUDA _NUFFT CreateLinearizationPlan().

* GPULinearizationBuffer — Pointer to a GPU buffer containing the lin-
earization buffer that can be passed to ATS CUDA_NUFFT NuFFT(). Lin-
earization buffer has float32 precision and has same size as pkclock buffer.

©2008-2025 Alazar Technologies Inc.

33

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_CUDA_NUFFT_DestroyLinearizationPlan(atsLinearizationPlan *linPlan)
Destroy a linearization plan.

Frees all GPU resources associated with a linearization plan.

Parameters
linPlan - Pointer to the linearization plan to be destroyed.

34 ©2008-2025 Alazar Technologies Inc.

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_CUDA_NUFFT_GetLinearizationFromPrecalibratedFunction(void
*GPUPrecali-
bratedFunction,
void
*GPULineariza-
tionBuffer, U32
samplesPer-
RecordIn, U32
samplesPer-
RecordOut, U32
recordsPer-
Buffer,
cudaStream _t
stream)

Generates a linearization buffer from a precalibrated function.

This function prepares a GPU linearization buffer that can be passed to
ATS_CUDA_NUFFT NuFFT().

Parameters

* GPUPrecalibratedFunction — Pointer to a GPU buffer of size samplesPer-
RecordIn of type float32 that contains the linearization function.

* GPULinearizationBuffer — Pointer to a GPU buffer of size samplesPer-
RecordOut * recordsPerBuffer and float32 precision where the linearization
buffer is to be written.

* samplesPerRecordIn — Length of the GPU PrecalibratedFunction.

* samplesPerRecordOut — Length of each record of the GPU Linearization-
Buffer.

¢ recordsPerBuffer — Number of times the GPUPrecalibratedFunction is re-
peated in GPULinearizationBuffer.

* stream — Stream identifier on which processing is to take place.

©2008-2025 Alazar Technologies Inc. 35

ATS-GPU-NUFFT Programmer’s Guide, Release 25.1.0

RETURN_CODE ATS_CUDA_NUFFT_GetVersion(U8 *major, U8 *minor, U8 *revision)
Get ATS-CUDA-NUFFT version number.

Parameters
* major — ATS-CUDA-NUFFT major version number.
* minor — ATS-CUDA-NUFFT minor version number.
* revision — ATS-CUDA-NUFFT revision number.

36 ©2008-2025 Alazar Technologies Inc.

INDEX

_ _ _SetWindowFunction ++ func-
A ATS_GPU_NUFFT_SetWindowF ion (C
ATS_CUDA_NUFFT_CreatelinearizationPlan tion), 25

(C++ function), 32 ATS_GPU_NUFFT_StartCapture (C++ function),
ATS_CUDA_NUFFT_CreateNuFFTPlan (C++ func- 27

tion), 29

ATS_CUDA_NUFFT_DestroylLinearizationPlan
(C++ function), 34
ATS_CUDA_NUFFT_DestroyNuFFTPlan (C++ func-
tion), 31
ATS_CUDA_NUFFT_GetLinearizationFromKclock
(C++ function), 33
ATS_CUDA_NUFFT_GetLinearizationFromPrecalibratedFunction
(C+ + function), 35
ATS_CUDA_NUFFT_GetVersion (C++ function),
36
ATS_CUDA_NUFFT_NuFFT (C++ function), 30
ATS_GPU_NUFFT_AbortCapture (C++ function),
15
ATS_GPU_NUFFT_AllocBuffer (C++ function),
16
ATS_GPU_NUFFT_EnableVerificationMode (C++
function), 17
ATS_GPU_NUFFT_FreeBuffer (C+ + function), 18
ATS_GPU_NUFFT_GetBuffer (C++ function), 19
ATS_GPU_NUFFT_GetVersion (C++ function), 20
ATS_GPU_NUFFT_ManageGetBuffer (C++ func-
tion), 22
ATS_GPU_NUFFT_OPTIONS (C++ enum), 14
ATS_GPU_NUFFT_OPTIONS: : ATS_GPU_NUFFT_KCLOCK_LINEARIZATION
(C+ + enumerator), 14
ATS_GPU_NUFFT_OPTIONS: :ATS_GPU_NUFFT_PRESET_LINEARIZATION
(C+ + enumerator), 14
ATS_GPU_NUFFT_PostBuffer (C++function), 21
ATS_GPU_NUFFT_SetBuffer (C++ function), 23
ATS_GPU_NUFFT_SetLinearizationFunction
(C+ + function), 24
ATS_GPU_NUFFT_Setup (C++functi0n), 26

37

	License Agreement
	Important
	Ownership
	Grant of License
	Restrictions
	Termination

	Rights
	Limited Warranty

	Introduction
	Prerequisites
	System requirements

	ATS-GPU-NUFFT
	Usage
	LabVIEW Programming

	API Reference

	ATS-CUDA-NUFFT
	API Reference

	Index

