

- 720 MB/s PCI Express (4-lane) interface
- 2 channels sampled at 16-bit resolution
- 180 MS/s simultaneous real-time sampling rate on each input
- ± 200 mV to ± 16 V input range
- On-board dual-port memory up to 512 Megasamples per channel
- FPGA-based input processing engine
- AlazarDSO® oscilloscope software
- Software Development Kit supports C/C++, C#, Python, MATLAB®, LabVIEW®
- Support for Windows® & Linux®

Product	Bus	Operating System	Channels	Max. Sample Rate	Bandwidth	Memory Per Channel	Resolution
ATS9462	PCIe x4	64-bit Windows & 64-bit Linux	2	180 MS/s	65 MHz	64M, 512M	16 bits

Overview

AlazarTech ATS®9462 is a 4-lane PCI Express (PCIe x4), dual-channel, high-resolution, 16-bit, 180 MS/s waveform digitizer card capable of streaming acquired data to PC memory at rates up to 720 MB/s.

ATS9462 is available with up to 512 Megasamples of on-board, dual-port memory per channel. This memory can be used as a very deep FIFO to mitigate system latencies during sustained data transfer.

Users can capture data from one trigger or a burst of triggers. Users can also stream very large datasets continuously to PC memory or hard disk.

ATS9462 allows users to build real-time data acquisition systems even under the Windows or Linux operating systems, as users are allowed to read acquired data while the next acquisition is in progress.

ATS9462 PCI digitizers are an ideal solution for cost-sensitive OEM applications that require a digitizer to be embedded into the customer's equipment.

ATS9462 is supplied with AlazarDSO software that lets the user get started immediately without having to go through a software development process.

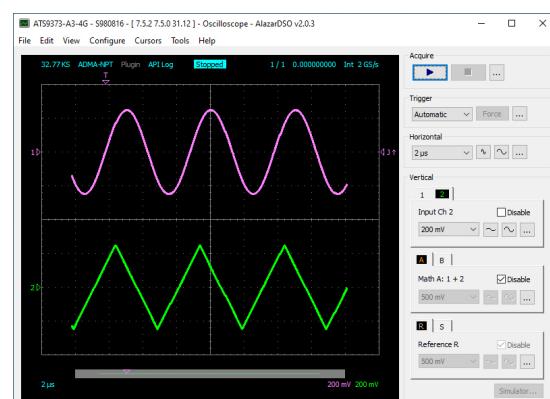
Users who need to integrate the ATS9462 in their own program can purchase a software development kit, ATS-SDK, for C/C++, C#, Python, MATLAB, and LabVIEW for both Windows and Linux operating systems.

All of this advanced functionality is packaged in a low-power, half-length PCI Express card.

Applications

Optical Coherence Tomography (OCT)

Ultrasonic & Eddy Current NDT/NDE


Radar/RF Signal Recording

Terabyte Storage Oscilloscope

High-Resolution Oscilloscope

Spectroscopy

Multi-Channel Transient Recording

PCI Express Bus Interface

ATS9462 interfaces to the host computer using a 4-lane PCI Express bus. Each lane operates at 2.5 Gbps (Gen 1).

The physical and logical PCIe x4 interface is provided by an on-board FPGA, which also integrates acquisition control functions, memory management functions and acquisition datapath. This very high degree of integration allows for optimum product reliability.

Some PCIe slots use open-ended sockets to allow for longer cards. As such, ATS9462 requires at least one free 4-lane, 8-lane or 16-lane, or an open-ended slot on the motherboard.

Note: The number of lanes actually connected to a PCIe slot may be fewer than the number supported by the physical slot size. In other words, a 4-lane slot may not provide a x4 electrical connection. Users must ensure that the slot is electrically x4 to achieve maximum sustained transfer rates with ATS9462.

The AlazarTech® 720 MB/s benchmarks were done using an ASUS® WS X299 SAGE motherboard.

Analog Input

An ATS9462 features two analog input channels with extensive functionality. Each channel has 65 MHz of full power analog input bandwidth. With software-selectable attenuation, you can achieve an input voltage range of ± 200 mV to ± 16 V. Attenuating probes (not included) can extend the voltage range even higher.

Software-selectable AC or DC coupling further increases the signal measurement capability. Software-selectable $50\ \Omega$ input impedance makes it easy to interface to high-speed RF signals.

Acquisition System

ATS9462 PCI digitizers use a pair of state of the art 180 MS/s, 16-bit ADCs to digitize the input signals. The real-time sampling rate ranges from 180 MS/s down to 1 KS/s. The two channels are guaranteed to be simultaneous, as they share the exact same clock.

An acquisition can consist of multiple records, with each record being captured as a result of one trigger event. A record can contain both pre-trigger and post-trigger data.

Infinite number of triggers can be captured by ATS9462 while operating in dual-port memory mode.

In between the multiple triggers being captured, the acquisition system is re-armed by the hardware within 32 sampling clock cycles.

This mode of capture, sometimes referred to as Multiple Record, is very useful for capturing data in applications with a very rapid or unpredictable trigger rate. Examples of such applications include medical imaging, ultrasonic testing, OCT and NMR spectroscopy.

Maximum Sustained Bus Throughput

PCI Express support on different motherboards is not always the same, resulting in significantly different sustained data transfer rates. The reasons behind these differences are complex and varied and will not be discussed here.

ATS9462 users can quickly determine the maximum sustained transfer rate for their motherboard by inserting their card in a PCIe slot and running the bus benchmarking tool provided in AlazarDSO for Windows or AlazarFrontPanel for Linux.

Digitizer Transfer Speed

The digitizer transfer speed is limited by the lower of:

- Bus Throughput
- Cumulative ADC Data Rate

The PCIe Gen 1 x4 bus throughput is 720 MB/s.

The Cumulative ADC Data Rate represents the maximum data the digitizer can generate and is calculated as:

Number of channels \times Max. sampling rate \times Bytes per sample

ATS9462: 2 channels \times 180 MS/s \times 2 = 720 MB/s

The Cumulative ADC Data Rate for ATS9462 is 720 MB/s and the bus throughput is 720 MB/s. Therefore, the digitizer transfer speed for ATS9462 is 720 MB/s.

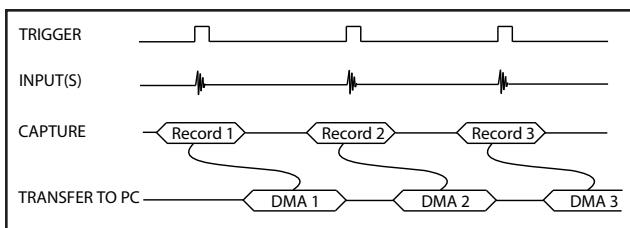
Recommended Motherboards or PCs

Many different types of motherboards and PCs have been benchmarked by AlazarTech. The ones that have produced the best throughput results are [listed here](#).

On-Board Acquisition Memory

ATS9462 supports on-board memory buffers of 64 Megasamples and 512 Megasamples. There are two distinct advantages of having on-board memory:

First, a snapshot of the ADC data can be stored into this acquisition memory at full acquisition speed without any concern for the bus throughput.


Second, and more importantly, on-board memory can also act as a very deep FIFO between the Analog-to-Digital converters and PCI Express bus, allowing very fast sustained data transfers across the bus, even if the operating system or another motherboard resource temporarily interrupts DMA transfers.

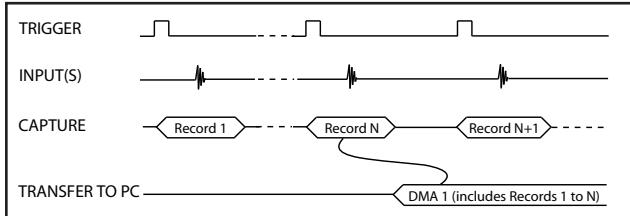
Traditional AutoDMA

In order to acquire both pre-trigger and post-trigger data in a dual-ported memory environment, users can use Traditional AutoDMA.

Data is returned to the user in buffers, where each buffer can contain from 1 to 8191 records (triggers). This number is called RecordsPerBuffer.

As shown in the following diagram, each record is transferred to PC host memory as soon as it is acquired.

Users can also specify that each record should come with its own header that contains a 40-bit trigger timestamp.


A **BUFFER_OVERFLOW** flag is asserted if more than 512 buffers have been acquired by the acquisition system, but not transferred to host PC memory by the AutoDMA engine.

While Traditional AutoDMA can acquire data to PC host memory at the maximum sustained transfer rate of the motherboard, a **BUFFER_OVERFLOW** can occur if more than 512 triggers occur in very rapid succession, even if all the on-board memory has not been used up.

No Pre-Trigger (NPT) AutoDMA

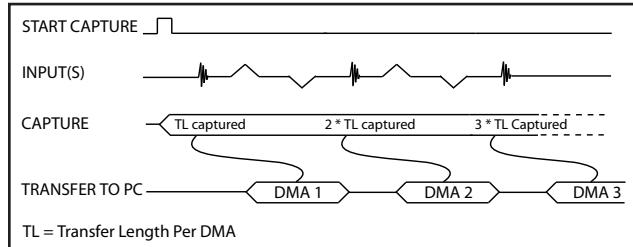
Many ultrasonic scanning and medical imaging applications do not need any pre-trigger data: only post-trigger data is sufficient.

NPT AutoDMA is designed specifically for these applications. By only storing post-trigger data, the memory bandwidth is optimized and the entire on-board memory acts like a very deep FIFO.

Note that a DMA is not started until RecordsPerBuffer number of records (triggers) have been acquired.

NPT AutoDMA buffers do not include headers or footers, so it is not possible to get trigger time-stamps.

More importantly, a **BUFFER_OVERFLOW** flag is asserted only if the entire on-board memory is used up. This provides a very substantial improvement over Traditional AutoDMA.


NPT AutoDMA can easily acquire data to PC host memory at the maximum sustained transfer rate of the motherboard without causing an overflow.

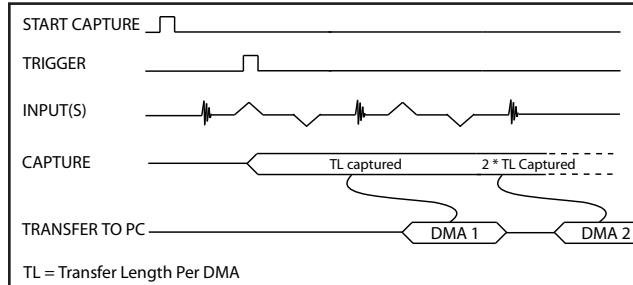
This is the recommended mode of operation for most ultrasonic scanning, OCT and medical imaging applications.

Continuous AutoDMA

Continuous AutoDMA is also known as the data streaming mode.

In this mode, data starts streaming across the PCIe bus as soon as the ATS9462 is armed for acquisition. It is important to note that triggering is disabled in this mode.

Continuous AutoDMA buffers do not include headers, so it is not possible to get trigger time-stamps.


A **BUFFER_OVERFLOW** flag is asserted only if the entire on-board memory is used up.

The amount of data to be captured is controlled by counting the number of buffers acquired. Acquisition is stopped by an AbortCapture command.

Continuous AutoDMA can easily acquire data to PC host memory at the maximum sustained transfer rate of the motherboard without causing an overflow. This is the recommended mode for very long signal recording.

Triggered Streaming AutoDMA

Triggered Streaming AutoDMA is virtually the same as Continuous mode, except the data transfer across the bus is held off until a trigger event has been detected.

Triggered Streaming AutoDMA buffers do not include headers, so it is not possible to get trigger time-stamps.

A **BUFFER_OVERFLOW** flag is asserted only if the entire on-board memory is used up.

As in Continuous mode, the amount of data to be captured is controlled by counting the number of buffers acquired. Acquisition is stopped by an AbortCapture command.

Triggered Streaming AutoDMA can easily acquire data to PC host memory at the maximum sustained transfer rate of the motherboard without causing an overflow. This is the recommended mode for RF signal recording that has to be started at a specific time, e.g. based on a GPS pulse.

FPGA-Based Input Processing Engine

ATS9462 contains an Altera Stratix II FPGA that manages the datapath, the DDR2 memory interface and PCI Express bus interface.

As part of ongoing product improvement, an Input Processing Engine (IPE) has been introduced in the on-board FPGA, whereby data coming from the on-board A/D converter ICs goes through this IPE before being stored in on-board memory or being DMA'd to host computer memory.

The first part of the IPE consists of an FIR filter that acts as a band-pass filter by default, but can be modified to be low-pass or high-pass filter.

The next part of the IPE applies a windowing function to the acquired data. By default, a Hanning window is used, but user is allowed to download a different function.

Note that the windowing function can only be used for NPT AutoDMA acquisitions with up to 2048-point records.

Software-selectable Bandwidth Limit

A majority of applications for PCI digitizers require oversampling of input signal, i.e. the frequency of the analog signal being digitized is a factor of 5 or 6 lower than the sample rate or even the Nyquist rate.

ATS9462 features a software-controlled bandwidth limit switch, which reduces high-frequency noise and improves signal to noise ratio. This switch is independently selectable for each input channel.

When selected, bandwidth limit switch can reduce the input bandwidth of a particular input to be approximately 20 MHz.

Output Data Format

By default, ATS9462 data comes out as unsigned binary, where code 0 represents the negative full scale, code (2^{n-1}) represents the positive full scale with zero being 2^{n-1} .

It is possible to change the data format to signed binary using an API call. In signed binary format, zero is represented by code 0, positive full scale is represented by ($2^{n-1}-1$) and negative full scale is represented by (2^{n-1}).

Triggering

The ATS9462 is equipped with sophisticated digital triggering options, such as programmable trigger thresholds and slope on any of the input channels or the External Trigger input.

While most oscilloscopes offer only one trigger engine, ATS9462 offers two trigger engines (called Engines J and K). This allows the user to combine the two engines using a logical OR, AND or XOR operand.

The user can specify the number of records to capture in an acquisition, the length of each record and the amount of pre-trigger data.

A programmable trigger delay can also be set by the user. This is very useful for capturing the signal of interest in a pulse-echo application, such as ultrasound, radar, lidar etc.

External Trigger Input

ATS9462 external trigger input (TRIG IN) can be set as an analog input with ± 5 V or ± 1 V full scale input range and $1\text{ M}\Omega$ input impedance.

Timebase

Timebase on the ATS9462 can be controlled either by on-board clock sources or by optional External Clock.

On-board clock sources consist of three different oscillators: a 10 MHz TCXO that is multiplied to produce the 180 MHz and 160 MHz sampling rate; a 125 MHz crystal oscillator that provides the 125 MS/s sample rate; and a 100 MHz crystal oscillator that provides 100 MS/s and lower sampling rates.

Sample rates lower than 100 MS/s are achieved by sampling at 100 MS/s and decimating the ADC data stream by an appropriate factor.

Optional External Clock

While the ATS9462 features low-jitter, high-reliability 125 MHz and 100 MHz crystal oscillators and a 10 MHz TCXO as the source of the timebase system, there may be occasions when digitizing has to be synchronized to an external clock source.

ATS9462 External Clock option provides an SMA input for an external clock signal.

The input stage of the External Clock circuit is an analog comparator that converts the incoming signal into a PECL clock signal that can be used by the on-board ADCs.

Note that the input impedance for the External Clock input is fixed at $50\text{ }\Omega$. Input coupling for the external clock input is user-programmable between AC and DC coupling.

Fast External Clock

If the user selects Fast External Clock mode, a new sample is taken by the on-board ADCs for each rising (or falling) edge of this External Clock signal.

In order to operate the ADC under optimal conditions, the user must set the appropriate frequency range for the external clock being supplied. The following ranges are supported:

External Clock: $1\text{ MHz} < f_{\text{EXT}} < 180\text{ MHz}$

The active edge of the external clock is software-selectable between the rising or falling edge.

Slow External Clock

If the external clock frequency is less than 1 MHz, then users can select Slow External Clock.

Note that Slow External Clock signal must be a 3.3 Volt TTL signal.

In this mode, the on-board ADCs are run at a fixed 125 MS/s sample rate. Each time a rising (or falling) edge is detected on the external clock signal, one sample is stored.

Thus, there can be zero to 8 ns skew between the clock edge and the actual sampling of the signal. This skew can change from sample to sample, so this type of clock should be used only if this jitter is acceptable in your application.

10 MHz Clock Reference

It is possible to generate the sampling clock based on a 10 MHz reference input. This is useful for RF systems that use a common 10 MHz reference clock.

ATS9462 uses an on-board PLL to generate the high-frequency clock. Clock frequencies in the range of 150 MHz to 180 MHz can be generated with a 1 MHz resolution.

AUX Connector - Trigger Output

ATS9462 provides an AUX (Auxiliary) BNC connector that is configured as a Trigger Output connector by default.

When configured as a Trigger Output, AUX BNC connector outputs a 5 Volt TTL signal synchronous to the ATS9462 Trigger signal, allowing users to synchronize their test systems to the ATS9462 Trigger.

When combined with the Trigger Delay feature of the ATS9462, this option is ideal for ultrasonic and other pulse-echo imaging applications.

AUX Connector - Trigger Enable

Another use of AUX connector is its use as a Trigger Enable Input in imaging applications.

In such applications, users must first configure AUX I/O as a Trigger Enable. A FRAME_START signal should be connected to AUX I/O and LINE_START signal to TRIG IN.

Once armed, ATS9462 will not trigger until a FRAME_START pulse has arrived. It will then accept a certain number of triggers and then wait for the next FRAME_START pulse before accepting any more triggers.


This mechanism guarantees full frame image acquisition.

Leader/Follower Systems

Up to 8 inputs can be sampled simultaneously using multiple ATS9462 boards configured as a Leader/Follower system by using a SyncBoard 9462 of appropriate width.

SyncBoard 9462 is a mezzanine board and plugs into the connector located along the top edge of the ATS9462 boards.

A SyncBoard 9462 uses the clock output from a Leader board and delivers copies of that clock to all boards, using equal length traces. Note that no PLL is used for clock buffering, thus ensuring truly simultaneous sampling even if the clock frequency is not constant.

SyncBoard 9462 also allows any of the boards to trigger the entire Leader/Follower system.

It should be noted that PCI Express is not a shared bus. As such, the data throughput is not shared between multiple boards in a Leader/Follower system.

Multi-board Systems using ATS 4X1G

ATS9462: Sync 4X1G is a device that allows simultaneous sampling across multiple independent ATS9462 waveform digitizers. This is achieved by providing common clock and trigger signals to each digitizer.

Sync 4X1G supports Trigger Enable and Trigger Disable so that users can delay triggering until all digitizers are armed; this is a distinct advantage over passive signal splitters.

ATS Sync 4X1G comes with a software library that allows user software to control it.

Sync 4X1G interfaces to AlazarTech digitizer cards using a proprietary high-frequency cable. The provided cable terminates in a ganged micro-miniature RF connector, which is used to connect to the Sync 4X1G.

The other end of the cable terminates in male SMA and BNC connectors, which are used to connect to the digitizer External Clock and External Trigger respectively.

Sync 4X1G connects to the host computer using a provided USB cable. Please refer to the [ATS Sync 4X1G datasheet](#) for full specifications.

Calibration

Every ATS9462 digitizer is factory calibrated to NIST- or CNRC-traceable standards. To periodically recalibrate an ATS9462, the digitizer must be shipped back to the factory.

Test Reports

AlazarTech thoroughly tests every digitizer that leaves the factory; each board must pass hundreds of tests before it is shipped to a customer.

In addition to an 8-hour burn-in, each digitizer undergoes a full Performance Verification Test (PVT) where functionality such as external trigger, internal & external clock are tested, and characteristics such as frequency response and bandwidth are measured to ensure that they are within specification.

Customers can obtain test reports for their AlazarTech digitizer (for a fee) by adding the following order number to their digitizer order: TestReport. When ordering test reports after the digitizer order, use: TestReport-AO.

AlazarDSO Software

ATS9462 is supplied with the powerful AlazarDSO software that allows the user to setup the acquisition hardware and capture, display and archive the signals.

The Stream-To-Memory command in AlazarDSO allows users to stream a large dataset to motherboard memory.

AlazarDSO software also includes powerful tools for benchmarking the computer bus and disk drive.

Software Development Kits

AlazarTech provides easy-to-use software development kits for customers who want to integrate the ATS9462 into their own software.

A Windows-compatible software development kit, called ATS-SDK, includes headers, libraries and source code sample programs written in C/C++, C#, Python, MATLAB, and LabVIEW.

A Linux-compatible software development kit, called ATS-devel, includes headers, libraries and source code sample programs written in C++ and Python.

These programs can fully control the ATS9462 and acquire data in user buffers.

The purchase of an ATS-SDK license includes a subscription that allows users to download ATS-SDK updates from the AlazarTech website for period of 12 months from the date of purchase.

Customers who want to download new releases beyond this 12 month period should purchase extended maintenance (order number ATS-SDK-1YR).

ATS-GPU

ATS-GPU is a software library developed by AlazarTech to allow users to do real-time data transfer from ATS9462 to a GPU card at rates up to 720 MB/s.

Interfacing waveform digitizers to GPUs involves creating a software mechanism to move data from one to the other and back to user buffers. The standard techniques used most often can get the job done, but feature very low data throughput due to software overheads.

AlazarTech designed ATS-GPU to eliminate this software bottleneck so that data can be moved from AlazarTech digitizers to GPUs and from GPUs to user buffers at full PCIe bus speeds. Once the data is available in GPU memory, many types of digital signal processing (DSP) can be done on this data at near-hardware speeds.

ATS-GPU-BASE is supplied with an example user application in source code. The application includes GPU kernels that use ATS-GPU to receive data, do very simple signal processing (data inversion), and copy the processed (inverted) data back to a user buffer. All this is done at the highest possible data transfer rate.

Programmers can replace the data inversion code with application-specific signal processing kernels to develop custom applications.

Version 23.1.0 and higher of ATS-GPU-BASE includes a Boxcar Averaging example kernel that provides the ability to perform real-time boxcar averaging on signals acquired by AlazarTech waveform digitizers. It uses optimized GPU routines that allow raw data acquisition rates up to the full digitizer transfer speed (720 MB/s for ATS9462). This signal processing module can lead to a major improvement of signal-to-noise ratio without using CPU resources and without doing FPGA programming.

ATS-GPU-OCT is the optional OCT Signal Processing library for ATS-GPU. It contains floating-point FFT routines that have also been optimized to provide the maximum number of FFTs per second. Kernel code running on the GPU can do zero-padding, apply a windowing function, do a floating-point FFT, calculate the amplitude and convert the result to a log scale. It is also possible to output phase information.

FFTs can be done on triggered data or on continuous gapless stream of data. It is also possible to do spectral averaging. Our benchmarks showed that it was possible to do 175,000 FFTs per second when capturing data in dual-channel mode and using a NVIDIA® Quadro® P5000 GPU.

ATS-GPU-NUFFT is an extension of ATS-GPU-OCT that allows non-uniform FFTs to be performed on data acquired uniformly in time domain using a fixed sampling rate. For SS-OCTs where the wavelength does not vary linearly in time, a fixed sampling rate results in data that is non-uniformly distributed in frequency domain. ATS-GPU-NUFFT allows linearized FFTs to be performed on such data.

ATS-GPU supports 64-bit Windows and 64-bit Linux for CUDA®-based development.

Support for Windows

Windows support for ATS9462 includes Windows 11, Windows 10, Windows Server® 2019, and Windows Server 2016. As Windows Server 2019 and 2016 are seldom used by our customers, they are expected to

work but are not regularly tested with each software release. If there are issues related to Windows Server 2016 or 2019, tech support may not be as rapid as for other operating systems.

Only 64-bit Windows operating systems are supported. The last 32-bit Windows driver is version 5.10.24, which supports Windows 7.

Microsoft mainstream support ended in 2018 for Windows 8.1 and Windows Server 2012 R2. As such, AlazarTech has ceased development on these operating systems. Current software and driver releases may work with these operating systems but they are not officially supported.

Due to lack of demand and due to the fact that Microsoft no longer supports these operating systems, AlazarTech no longer supports Windows 8, Windows 7, Windows XP, Windows Vista, Windows Server 2012, Windows Server 2008 R2, and Windows Server 2008.

Linux Support

AlazarTech offers Dynamic Kernel Module Support (DKMS) drivers for the following Linux distributions: Ubuntu, Debian, and RHEL®.

AlazarTech DKMS drivers may work for other Linux distributions but they have not been tested and technical support may be limited.

Users can download the DKMS driver and associated library for their specific distribution here:

www.alazartech.com/en/linux-drivers/ats9462/13/

Only 64-bit Linux operating systems are supported.

A GUI application called AlazarFrontPanel that allows simple data acquisition and display is also provided.

ATS-SDK includes source code example programs for Linux, which demonstrate how to acquire data programmatically using a C compiler. Note that example programs are only provided for Python and C++.

Accessories for Out-of-Warranty Products

Accessories, such as SyncBoards, purchased for use with in-warranty digitizer cards will be covered by a 1-year warranty.

Accessories purchased for use with out-of-warranty digitizers will not be warranted against defects in materials and workmanship. As AlazarTech cannot verify with certainty that the cause of any malfunction is not due to the non-warranted digitizer, accessories purchased for out-of-warranty digitizers will require a warranty waiver.

Upgrading Your Digitizer in The Field

It is always recommended to get upgrades installed at the factory with the initial digitizer purchase.

If the digitizer is still under warranty, it may be possible to add certain upgrades in the field, but there is a small chance that the upgrade will not work, in which case the digitizer would need to be returned to the factory to complete the upgrade.

If the digitizer is no longer under warranty, the upgrade must be done at the factory and there will be a minimum service charge in addition to the cost of the upgrade. This is so that AlazarTech can verify that the digitizer meets basic performance levels prior to any upgrade.

Technical Support

AlazarTech is known for its world-class technical support. Customers receive free technical support on hardware products that are under warranty.

As of November 1, 2025, AlazarTech digitizers come with a standard two (2) year parts and labor warranty. This warranty can be extended for a fee (more information can be found in the next section: *Extended Warranty*).

If your waveform digitizer is out of warranty, you will not be eligible for free technical support on AlazarTech hardware or software products and you will need to purchase technical support hours (order number SUPPORT-HR5) to obtain assistance.

In addition, any necessary repairs to your out-of-warranty hardware products will carry a minimum bench charge.

Extended Warranty

As of November 1, 2025, the purchase of an ATS9462 includes a standard two (2) year parts and labor warranty. AlazarTech hardware parts and labor warranty should be maintained to ensure uninterrupted access to technical support and warranty repair services.

Customers may extend their warranty by ordering the appropriate Extended Warranty:

ATS9462-061 for ATS9462-64M

ATS9462-062 for ATS9462-512M

This should be purchased before expiration of the standard warranty (or before expiration of an Extended Warranty).

If the warranty lapses, renewal at a later date will be subject to a reinstatement fee, to cover the administrative costs of warranty reinstatement, and a 6-month waiting period for repair claims. Furthermore, warranty must be extended at least 6 months past the current date.

Get your warranty end date by registering your product at: www.alazartech.com/en/my-account/my-products/.

Export Control Classification

According to the Export Controls Division of Government of Canada, ATS9462 is currently not controlled for export from Canada. Its export control classification is N8, which is equivalent to ECCN EAR99. ATS9462 can be shipped freely outside of Canada, with the exception of countries listed on the [Area Control List](#) and [Sanctions List](#). Furthermore, if the end-use of ATS9462, in part or in its entirety, is related to the development or deployment of weapons of mass destruction, AlazarTech is obliged to apply for an export permit.

RoHS Compliance

ATS9462 is fully RoHS compliant, as defined by Directive 2015/863/EU (RoHS 3) of the European Parliament and of the Council of 31 March 2015 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

All manufacturing is done using RoHS-compliant components and lead-free soldering.

REACH Compliance

AlazarTech verifies its supply chain against the latest REACH requirements. A compliance statement is usually available within 6 months of release of the European Chemicals Agency (ECHA) updated substance of very high concern (SVHC), Authorizations, and Restrictions lists.

EC Conformity

ATS9462 conforms to the following standards:

Electromagnetic Emissions:

CISPR 32:2015/AMD1:2019 /

EN 55032:2015/A11:2020 (Class A):

Multimedia Equipment (MME). Radio disturbance characteristics. Limits and method of measurement: EN 61000-3-2:2014, EN 61000-3-3:2013.

Electromagnetic Immunity:

EN 55035:2017/A11:2020:

Multimedia Equipment (MME) Immunity characteristics — Limits and methods of measurement: EN 61000-4-3:2006 + A1:2008 + A2:2010.

Safety:

IEC 62368-1:2014 / EN 62368-1:2014+A11:2017: Audio/video, information and communication technology equipment - Part 1: Safety requirements.

ATS9462 also follows the provisions of the following directives: 2014/35/EU (Low Voltage Equipment); 2014/30/EU (Electromagnetic Compatibility).

FCC & ICES-003 Compliance

ATS9462 has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15, subpart B of the FCC Rules, and the Canadian Interference-Causing Equipment Standard ICES-003 issue 7 October 2020.

Processing Using Multiple CPU Cores

Programmers can take advantage of multiple cores available in modern CPUs to speed up signal processing.

Benchmarks have shown that a quad-core CPU can perform real-time averaging at a rate of 1.0 GB/s and only use up 20% of CPU cycles. Increasing the number of cores or decreasing the sample rate reduces CPU usage even further.

One of the main applications of using multiple cores to do signal processing is Quantum Computing and Spectroscopy applications, where each record contains partial information about the signal of interest and a large number of records must be accumulated to gather a representative dataset.

ORDERING INFORMATION

ATS9462-64M	ATS9462-002
ATS9462-512M	ATS9462-003
ATS9462: External Clock Upgrade	ATS9462-004
ATS9462: SyncBoard 2x	ATS9462-006
ATS9462: SyncBoard 4x	ATS9462-007
ATS9462: FIFO-only to 64M Upgrade	ATS9462-010
ATS9462: FIFO-only to 512M Upgrade	ATS9462-011
ATS9462: 64M to 512M Upgrade	ATS9462-012
ATS9462-64M: One Year Extended Warranty	ATS9462-061
ATS9462-512M: One Year Extended Warranty	ATS9462-062
Test reports ordered with board	TestReport
Test reports ordered after board order	TestReport-AO
ATS9462: Sync 4X1G	ATS9462-025
ATS Sync xX1G: AC Wall Adapter	SYNC-X1G-PWR
ATS Sync 4X1G: GRF1-SMA/BNC cable	SYNC-4X1-CBL
SYNC-4X1G: One Year Extended Warranty	SYNC-4X1-061
ATS-SDK purchased with a digitizer board or ATS-GPU: License + 1 Year Subscription (Supports C/C++, Python, MATLAB, and LabVIEW)	ATS-SDK
ATS-SDK purchased separately: License + 1 Year Subscription + 5 hours of technical support (Supports C/C++, Python, MATLAB, and LabVIEW)	ATS-SDK-WOD
ATS-GPU-BASE: GPU Streaming Library License + 1 Year Subscription	ATSGPU-001
ATS-GPU-OCT: Signal Processing Library License + 1 Year Subscription (requires ATSGPU-001)	ATSGPU-101
ATS-GPU-NUFFT: ATS-GPU-OCT Extension for fixed-frequency sampled data License + 1 Year Subscription (requires ATSGPU-001 & ATSGPU-101)	ATSGPU-201
5 Hours of technical support	SUPPORT-HRS

System Requirements

Personal computer with at least one free x4, x8, or x16 or open-ended PCI Express slot (must be at least x4 slot to achieve full data throughput) and 16 GB RAM; if using AlazarDSO, 16 GB of free hard disk space is also required.

Power Requirements

+12 V	1.2 A, typical
+3.3 V	1.1 A, typical

Physical

Size	Single slot, half length PCI Express card (4.4 inches x 7.8 inches excluding the connectors protruding from the front panel)
Weight	250 g

I/O Connectors

CH A, CH B, TRIG IN, AUX I/O	BNC female connectors
ECLK	SMA female connector

Environmental

Operating temperature	0 to 55 degrees Celsius, ambient
Storage temperature	-20 to 70 degrees Celsius
Relative humidity	5 to 95%, non-condensing

Acquisition System

Resolution	16 bits
Bandwidth (-3 dB)	
DC-coupled:	DC - 65 MHz for all ranges, except ± 4 V ± 4 V: DC - 50 MHz
AC-coupled lower cut-off frequency:	
1 M Ω :	10 Hz
50 Ω :	100 kHz
Number of channels	2, simultaneously sampled
Maximum sample rate	180 MS/s single shot
Minimum sample rate	1 KS/s single shot for internal clocking
Full scale input ranges	
1 M Ω input impedance:	± 200 mV, ± 400 mV, ± 800 mV, ± 2 V, ± 4 V, ± 8 V, and ± 16 V, software-selectable
50 Ω input impedance:	± 200 mV, ± 400 mV, ± 800 mV, ± 2 V, and ± 4 V, software-selectable
DC accuracy	$\pm 2\%$ of full scale in all ranges
Input coupling	AC or DC, software-selectable
Input impedance	50 Ω or 1 M Ω $\pm 1\%$ in parallel with 50 pF ± 10 pF, software-selectable
Absolute maximum input	
1 M Ω	± 28 V (DC + peak AC for CH A, CH B and TRIG IN only without external attenuation)
50 Ω	± 4 V (DC + peak AC for CH A, CH B and TRIG IN only without external attenuation)

Acquisition Memory System

Memory size	64 MB or 512 MB
Record length	Software-selectable with 32-point resolution. Record length must be a minimum of 256 points and maximum of the on-board memory size for single-port memory operation.
	There is no upper limit on the maximum record length in data streaming mode.
Number of records	Software-selectable from a minimum of 1 to a maximum of infinite number of records
Pre-trigger depth	Up to 2048 points in NPT mode (with firmware version 23 and higher)
Post-trigger depth	Record Length – Pre-Trigger Depth

Timebase System

Timebase options	Internal Clock or External Clock (Optional)
Internal sample rates	180 MS/s, 160 MS/s, 125 MS/s, 100 MS/s, 50 MS/s, 20 MS/s, 10 MS/s, 5 MS/s, 2 MS/s, 1 MS/s, 500 KS/s, 200 KS/s, 100 KS/s, 50 KS/s, 20 KS/s, 10 KS/s, 5 KS/s, 2 KS/s, 1 KS/s
Internal clock accuracy	± 2 ppm for 180 MS/s & 160 MS/s ± 25 ppm for 125 MS/s and lower

Dynamic Parameters

Typical values measured using a randomly selected ATS9462 with Amplifier Bypass Mode. Input was provided by an HP8656A signal generator, followed by a 9-pole, 1 MHz band-pass filter (TTE Q36T-1M-100K-50-720B). Input frequency was set at 1 MHz and output amplitude was 520 mV rms, which was approximately 95% of the full scale input.

SNR	72.9 dB
SINAD	72.3 dB
THD	-83 dB
SFDR	-82 dB

Note that these dynamic parameters may vary from one unit to another, with input frequency and with the full scale input range selected.

Optional ECLK (External Clock) Input

Input impedance	50 Ω
Input coupling	AC or DC, software-selectable

Fast External Clock

Signal level	500 mV _{P-P} to 2 V _{P-P}
Maximum frequency	180 MHz
Minimum frequency	1 MHz
Sampling edge	Rising or falling, software-selectable
Decimation factor	Software-selectable from 1 to 100,000

Slow External Clock

Signal Level	3.3 V LVTTL
Maximum frequency	10 MHz
Minimum frequency	DC

Optional 10 MHz Reference PLL Input

Signal Level	500 mV _{P-P} to 2 V _{P-P} or 3.3 V LVTTL
Input impedance	50 Ω
Input coupling	AC coupled
Input frequency	10 MHz ± 0.1 MHz
Maximum frequency	10.1 MHz
Minimum frequency	9.9 MHz
Sampling clock freq.	150 MHz to 180 MHz with 1 MHz resolution

Triggering System

Mode	Edge triggering with hysteresis
Comparator type	Digital comparators for internal (CH A, CH B) triggering and analog comparators for TRIG IN (External) triggering
Number of trigger engines	2
Trigger engine combination	Engine J, engine K, J OR K, software-selectable
Trigger engine source	CH A, CH B, TRIG IN, Software or None, independently software-selectable for each of the two Trigger Engines
Hysteresis	±5% of full scale input, typical
Trigger sensitivity	±10% of full scale input range. This implies that the trigger system may not trigger reliably if the input has an amplitude less than ±10% of full scale input range selected
Trigger level accuracy	±5%, typical, of full scale input range of the selected trigger source
Bandwidth	65 MHz
Trigger delay	Software-selectable from 0 to 9,999,999 sampling clock cycles
Trigger timeout	Software-selectable with a 10 μs resolution. Maximum settable value is 3,600 seconds. Can also be disabled to wait indefinitely for a trigger event

TRIG IN (External Trigger) Input

Input impedance	1.01 MΩ ±10% in parallel with 50 pF ±10 pF
Bandwidth (-3 dB)	
DC-coupled	DC - 25 MHz
AC-coupled	10 Hz - 25 MHz
Input range	±5 V or ±1 V, software-selectable
DC accuracy	±10% of full scale input
Absolute maximum input	±28 V (DC + peak AC without external attenuation)
Coupling	AC or DC, software-selectable

Auxiliary I/O (AUX I/O)

Signal direction	Input or Output, software-selectable. Trigger Output by default
Output types:	Trigger Output, Pacer (programmable clock) Output, Software-controlled Digital Output
Input types:	Trigger Enable
Output	Software readable Digital Input
Amplitude:	5 Volt TTL
Synchronization:	Synchronized to rising edge of sampling clock
Input	
Amplitude:	3.3 Volt TTL
Input coupling:	DC

Materials Supplied

ATS9462 PCI Express Card
ATS9462 Software Installer (downloadable from [product page](#))

Certification and Compliances

RoHS 3 (Directive 2015/863/EU) Compliance
REACH Compliance
CE Marking — EC Conformity
FCC Part 15 Class A / ICES-003 Class A Compliance

All specifications are subject to change without notice

† AlazarDSO, AlazarTech, and AlazarTech ATS are registered trademarks of Alazar Technologies Inc.
MATLAB is a trademark and/or registered trademark of The MathWorks, Inc.
LabVIEW is a trademark and/or registered trademark of National Instruments.
Windows and Windows Server are trademarks and/or registered trademarks of Microsoft Corporation in the U.S. and/or other countries.
Linux is a registered trademark of Linus Torvalds.
ASUS is either a US registered trademark or trademark of ASUSTeK Computer Inc. in the United States and/or other countries.
CUDA, NVIDIA, and Quadro are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and/or other countries.
RHEL is a registered trademark of Red Hat, Inc. in the United States and other countries.
All other trademarks are the property of their respective owners.

Manufactured By:**Alazar Technologies Inc.**

6600 TRANS-CANADA HIGHWAY, SUITE 310
POINTE-CLAIRES, QC, CANADA H9R 4S2

TOLL FREE: 1-877-7-ALAZAR
TEL: (514) 426-4899 FAX: (514) 426-2723

E-MAIL: sales@alazartech.com

DATASHEET REVISION HISTORY

Changes from version 1.5P (Dec 2024) to version 1.5Q

Changed section name. Previously Maximum Sustained Transfer Rate
 Added section
 Updated hyperlink to recommended motherboards document
 Replaced full bus speed with digitizer transfer speed
 Removed Linux source code
 Updated standard warranty period from one year to two years
 Updated standard warranty period from one year to two years
 Removed limit on the number of purchasable extended warranties

Section, Page
Maximum Sustained Bus Throughput, pg. 2
Digitizer Transfer Speed, pg. 2
Recommended Motherboards or PCs, pg. 2
ATS-GPU, pg. 6
Linux Support, pg. 7
Technical Support, pg. 7
Extended Warranty, pg. 7

Changes from version 1.5o (Feb 2024) to version 1.5P

Modified PCIe specification slot requirements to include open-ended slots
 Removed *Amplifier Bypass Mode* section; this functionality has been deprecated
 Removed *Wideband Input Upgrade* section; this upgrade has been deprecated
 Added section
 Added test report order numbers
 Updated system requirements
 Removed *Amplifier Bypass Mode* section; this functionality has been deprecated
 Removed *Optional Wideband Input* section; this upgrade has been deprecated
 Replaced install disk on USB flash drive with downloadable content

Section, Page
PCI Express Bus Interface, pg. 2
Amplifier Bypass Mode, pg. 4
Wideband Input Upgrade, pg. 4
Test Reports, pg. 6
Ordering Information, pg. 8
System Requirements, pg. 9
Amplifier Bypass Mode, pg. 9
Optional Wideband Input, pg. 9
Materials Supplied, pg. 10

Changes from version 1.5M (Dec 2023) to version 1.5o

Added section on ATS9462: Sync 4X1G
 Modified warranty reinstatement fee information
 Added Sync 4X1G, its accessories and extended warranty:
 ATS9462-025, SYNC-X1G-PWR, SYNC-4X1-CBL, SYNC-4X1-061
 Specified that Operating temperature is ambient

Section, Page
Multi-board Systems using ATS 4X1G, pg. 5
Extended Warranty, pg. 7
Ordering Information, pg. 8
Environmental, pg. 9

Changes from version 1.5M (Nov 2022) to version 1.5N

Removed note about NPT Footers: ATS9462 does not support NPT Footers.
 Corrected unsigned binary positive full scale to 2^{n-1} (was incorrectly stated as $2^{n-1}-1$),
 corrected signed binary positive full scale to $2^{n-1}-1$ (was incorrectly stated as $2^{n-2}-1$)
 and negative full scale 2^{n-1} (was incorrectly stated as 2^{n-2}).
 Added paragraph on Boxcar Averaging for ATS-GPU-BASE
 Modified to include new warranty reinstatement policy
 Added section for REACH Compliance
 Absolute maximum input: Corrected label for External Trigger from EXT to TRIG IN
 Trigger Engine Source: Corrected label for External Trigger from EXT to TRIG IN
 Added REACH Compliance, CE Marking, and FCC Part 15/ICES-003 to list

Section, Page
No Pre-Trigger (NPT) AutoDMA, pg. 3
Output Data Format, pg. 4
ATS-GPU, pg. 6
Extended Warranty, pg. 7
REACH Compliance, pg. 7
Acquisition System, pg. 9
Triggering System, pg. 10
Certification and Compliances, pg. 10

Changes from version 1.5L (July 2022) to version 1.5M

Removed 32-bit Windows
 Added new section to specify default output data format is unsigned binary
 and that it can be changed to signed binary via an API call.
 Separate description for Linux SDK to detail supported programming languages
 Noted that only 64-bit Windows is supported and that the last driver version that
 supports 32-bit Windows is 5.10.24.
 Updated download link for the Linux driver and associated library, and
 added note: ATS-SDK example programs are only provided for Python and C++
 Added new section to detail AlazarTech's accessory policy
 Added new section to detail AlazarTech's upgrade policy

Section, Page
Feature Table, pg. 1
Output Data Format, pg. 4
Software Development Kits, pg. 6
Support for Windows, pg. 6
Linux Support, pg. 6
Accessories for Out-of-Warranty Products, pg. 7
Upgrading Your Digitizer in The Field, pg. 7

DATASHEET REVISION HISTORY

Changes from version 1.5K (Nov 2021) to version 1.5L

Changes to maintenance subscription inclusions: removed technical support

Software Development Kits, pg. 5

Added Windows 11

Support for Windows, pg. 6

Added new section to specify how AlazarTech handles technical support:

Technical Support, pg. 7

Customers receive free technical support on hardware products that are under warranty.

Out-of-warranty support requires the purchase of support hours.

Updated Electromagnetic Immunity standard number (product was retested)

EC Conformity, pg. 7

Updated specification name from *Input protection* to *Absolute maximum input*
Actual value did not change.

Acquisition System, pg. 8

Updated specification name from *Input protection* to *Absolute maximum input*
Actual value did not change.

TRIG IN (External Trigger) Input, pg. 9

Updated name for product *Software Development Kit*
Now called: *ATS-SDK purchased with a digitizer board or ATS-GPU*

Ordering Information, pg. 10

Added products ATS-SDK-WOD and SUPPORT-HR5

Ordering Information, pg. 10

Changes from version 1.5J (Oct 2021) to version 1.5K

Changed term for multi-board system to *Leader/Follower*

Leader/Follower Systems, pg. 5

Specified number of extended warranties that users may purchase

Extended Warranty, pg. 7

Changes from version 1.5I (July 2021) to version 1.5J

Updated support status for Windows 8.x and Windows Server versions 2012 R2, 2016, 2019

Support for Windows, pg. 6

Updated Linux Support: only 64-bit Linux operating systems are supported

Linux Support, pg. 6

Changes from version 1.5H (Jan 2020) to version 1.5I

Changed terminology from *Information Technology Equipment (ITE)* to *Multimedia Equipment (MME)*

EC Conformity, pg. 7

Updated section *ATS-GPU* and added paragraph on *ATS-GPU-NUFFT*

ATS-GPU, pg. 6

Updated Linux Support (RHEL) and added new DKMS drivers

Linux Support, pg. 6

Updated product registration URL

Extended Warranty, pg. 7

Updated standards and directives

EC Conformity, pg. 7

Updated year of FCC and ICES-003 standards

FCC & ICES-003 Compliance, pg. 7

Added Auxiliary I/O input coupling (DC)

Auxiliary I/O (AUX I/O), pg. 9

Updated software descriptions and added order number for *ATS-GPU-NUFFT*

Ordering Information, pg. 10

Changes from version 1.5G (May 2019) to version 1.5H

Changed *Sampling Rate* column to *Max. Sample Rate*

Feature Table, pg. 1

Added AlazarFrontPanel (for Linux) as benchmarking tool

Maximum Sustained Transfer Rate, pg. 2

Removed qualified metrology lab as option for recalibrating ATS9462

Calibration, pg. 5

Specified Windows 7 version support, re-ordered list of operating systems, and
added end-of-support notice for Windows 7 and Windows Server 2008 R2

Support for Windows, pg. 6

Specified Linux distributions: CentOS, Debian, and Ubuntu

Linux Support, pg. 6

Clarified specifications by separating Fast and Slow External Clock

Optional ECLK (External Clock) Input, pg. 9

Changed fast ext. clock signal from “ ± 200 mV to ± 1 V” to “500 mV_{P-P} to 2 V_{P-P}”

Removed sine wave requirement

Changed signal level from “ ± 200 mV sine wave or 3.3 V LVTTL”
to “500 mV_{P-P} to 2 V_{P-P} or 3.3 V LVTTL”

Optional 10 MHz Reference PLL Input, pg. 9

Corrected Output types (removed Busy Output and added Pacer Output)

Auxiliary I/O (AUX I/O), pg. 9

Changes from version 1.5F (Jan 2019) to version 1.5G

Updated ATS-GPU data transfer rate and benchmarks (FFTs per second and GPU)

ATS-GPU, pg. 6

Removed *ATS-GMA* section as this product is being [discontinued](#)

ATS-GMA, pg. 6

Added section *Extended Warranty*

Extended Warranty, pg. 6

Specified that listed Pre-trigger depth applies to NPT mode

Acquisition Memory System, pg. 8

Added External Clock input coupling

Optional ECLK (External Clock) Input, pg. 9

DATASHEET REVISION HISTORY

Changes from version 1.5F (Jan 2019) to version 1.5G (continued)

Updated Trademark information pg. 9
Removed ATS-GMA order numbers (ATSGMA-001, ATSGMA-101) Ordering Information, pg. 10

Changes from version 1.5E (Sept 2018) to version 1.5F

Updated *Sanctions List* URL Export Control Classification, pg. 7
Updated Trademark information pg. 9

Changes from version 1.5D (Jan 2018) to version 1.5E

Updated RoHS Compliance to RoHS 3 Global change
Updated product image pg. 1
Clarified Operating System Support Feature Table, pg. 1
Added note: Wideband Input Upgrade can only be used while in Amplifier Bypass Mode Wideband Input Upgrade, pg. 2
Correction of trigger engines: changed to J and K (instead of X and Y) Triggering, pg. 4
Added *External Trigger Input* section External Trigger Input, pg. 4
Added information on ATS-SDK license Software Development Kits, pg. 5
Specified 64-bit version for Windows and Linux support ATS-GPU, pg. 6
Added *ATS-GMA* section ATS-GMA, pg. 6
Added list of supported Microsoft Windows versions Support for Windows, pg. 6
Added *Acquisition Memory System* section Acquisition Memory System, pg. 8
Added Maximum Amplitude: 2 V_{P-P} Optional ECLK (External Clock) Input, pg. 9
Added "PLL" to section name for clarity, corrected Input Frequency Optional 10 MHz Reference PLL Input, pg. 9
tolerance, and added Max. and Min. Frequencies
Corrected Trigger Engine Combination Triggering System, pg. 9
Replaced *TRIG OUT Output* section with *Auxiliary I/O (AUX I/O)* Auxiliary I/O (AUX I/O), pg. 9
Added Trademark information pg. 9
Added subscription length for ATS-SDK, ATSGPU-001, ATSGPU-101 Ordering Information, pg. 10
Added products ATSGMA-001, ATSGMA-101

Changes from version 1.5C (Oct 2017) to version 1.5D

Added note about NPT Footers No Pre-Trigger (NPT) AutoDMA, pg. 3
Added CNRC as calibration standard Calibration, pg. 5
Added -BASE and -OCT to ATS-GPU description for clarity ATS-GPU, pg. 5
Corrected size of card Physical, pg. 7
Updated email address Manufactured By, pg. 8

Changes from version 1.5B (Oct 2017) to version 1.5C

Updated description for product ATSGPU-001 & ATSGPU-101 Ordering Information System, pg. 8

Changes from version 1.5A (Oct 2017) to version 1.5B

Added DC-coupled bandwidth for ± 4 V range (DC - 50 MHz) Acquisition System, pg. 7
Changed the way AC-coupled bandwidth is specified. Acquisition System, pg. 7
Now showing AC-coupled lower cut-off frequency
Removed Bandwidth flatness specification Acquisition System, pg. 7

Changes from version 1.5 (Sept 2017) to version 1.5A

Corrected full scale input range for Amplifier Bypass Mode to ± 800 mV Amplifier Bypass Mode, pg. 2

Changes from version 1.4 (Nov 2013) to version 1.5

Added Python to list of SDK supported languages, and Support for Windows & Linux Features, pg. 1
Removed deprecated basic model (FIFO-only) with no on-board memory Overview, pg. 1
Added Python & LabVIEW to list of supported languages for ATS-SDK, removed ATS-VI Overview, pg. 1

DATASHEET REVISION HISTORY

Changes from version 1.4 (Nov 2013) to version 1.5 (continued)

	Section, Page
Specified that Attenuating probes are not included	Analog Input, pg. 2
Removed section <i>FIFO-Only Model</i> ; product deprecated	FIFO-Only Model, pg. 2
Removed section on deprecated AlazarDSO plug-in: <i>Calibration Software</i>	Calibration Software, pg. 5
Modified AlazarDSO description	AlazarDSO Software, pg. 5
Removed deprecated items: <i>Optional Stream-To-Disk Software</i> ; <i>Optional Acquire At Time Plug-In</i>	AlazarDSO Software, pg. 5
New section <i>Software Development Kits</i> to replace sections: <i>ATS-SDK Software Development Kit</i> and <i>ATS-VI Software Development Kit</i>	Software Development Kits, pg. 5
Replaced <i>GPU Based Signal Processing</i> section with new <i>ATS-GPU</i> section	ATS-GPU, pg. 5
Replaced section <i>ATS9462-Linux Software Development Kit</i> with new <i>Linux Support</i> section	Linux Support, pg. 6
Added Export Control Classification information	Export Control Classification, pg. 6
Added section on RoHS compliance	RoHS Compliance, pg. 6
Added section on EC Conformity	EC Conformity, pg. 6
Added section on FCC & ICES-003 Compliance	FCC & ICES-003 Compliance, pg. 6
Updated External Trigger Input Impedance to $1.01 \text{ M}\Omega \pm 10\%$	TRIG IN (External Trigger) Input, pg. 8
Updated list of Certification and Compliances	Certification and Compliances, pg. 8
Corrected product name for ATS-SDK	Ordering Information, pg. 8
Removed ATS-VI (ATS-SDK now supports LabVIEW)	Ordering Information, pg. 8
Removed products ATS9462-001, ATS9462-009, ATS9462-Linux, ATSGPU-WIN ATS-DSO-STR, ATS-DSO-AAT, ATS-DSO-CAL, ATS-DSO-PDK	Ordering Information, pg. 8
Added products ATS9462-061, ATS9462-062, ATSGPU-001, ATSGPU-101	Ordering Information, pg. 8