ATS-GPU-BASE

Version 24.1.0
January 16, 2024

N AlazarTech

CONTENTS

1 License Agreement 3
1.1 ImpOortant v v e 3
1.2 Ownership o o e 3
1.3 Rights e e e e e e e e 4
1.4 Limited Warranty o o v i it e e e e e e e 4

2 Introduction 7

3 Prerequisites 9
3.1 System requirementso it et e e e e e e e e e e e e e e 9
3.2 Programming eXpPerie€ncCe v v i i e e e e e e e e e e e e e e e e e e 10

4 ATS-GPU-BASE 11
4.1 Usage o e e e e e e e e e 11
4.2 Performance guidelines 14
4.3 Benchmarks e e 14
4.4 APIReference i i i i it e e e e e e 15

5 ATS-CUDA 29
5.1 APIReference i i i e e e e e 29

Index 55

o—
o—

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

Note: This is the documentation for AlazarTech’s ATS-GPU version 24.1.0. Please visit our docu-
mentation homepage to find documentation for other versions or products.

©2008-2024 Alazar Technologies Inc. 1

https://docs.alazartech.com
https://docs.alazartech.com

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

2 ©2008-2024 Alazar Technologies Inc.

CHAPTER
ONE

LICENSE AGREEMENT

Copyright (c) 2008-2023 Alazar Technologies, Inc.

1.1 Important

CAREFULLY READ THIS SOFTWARE LICENSE AGREEMENT. BY CLICKING THE APPLICABLE BUT-
TON TO COMPLETE THE INSTALLATION PROCESS, YOU AGREE TO BE BOUND BY THE TERMS
OF THIS AGREEMENT. IF YOU DO NOT WISH TO BECOME A PARTY TO THIS AGREEMENT AND
BE BOUND BY ITS TERMS AND CONDITIONS, DO NOT INSTALL OR USE THE SOFTWARE, AND
RETURN THE SOFTWARE (WITH ANY ACCOMPANYING MEDIA) WITHIN THIRTY (30) DAYS
OF RECEIPT. ALL RETURNS TO ALAZAR TECHNOLOGIES INC. (“ALAZARTECH”) WILL BE SUB-
JECT TO ALAZARTECH’S THEN-CURRENT POLICY. IF YOU ARE ACCEPTING THESE TERMS ON
BEHALF OF AN ENTITY, YOU AGREE THAT YOU HAVE AUTHORITY TO BIND THE ENTITY TO
THESE TERMS.

1.2 Ownership

AlazarTech retains the ownership of ATS-GPU software (“Software”). It is licensed to you for use
under the following conditions:

1.2.1 Grant of License

You may only concurrently use the Software on the computers that have an AlazarTech waveform
digitizer card plugged in (for example, if you have purchased one AlazarTech card, you have a
license for one concurrent usage). If the number of users of the Software exceeds the number of
AlazarTech cards you have purchased, you must have a reasonable process in place to assure that
the number of persons concurrently using the Software does not exceed the number of AlazarTech
cards purchased.

This license is non-transferable.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

1.2.2 Restrictions

You may not copy the documentation or Software except as described in the installation section of
the Software manual. You may not distribute, rent, sub-lease or lease the Software or documenta-
tion, including translating or decomposing. You may not modify, reverse-engineer, decompile, or
disassemble any part of the Software or documentation, or produce any derivative work other than
software applications that communicate with AlazarTech hardware using the published Application
Programming Interface (API).

You may not remove, block, or modify any titles, logos, trademarks, copyright and/or patent no-
tices, digital watermarks, disclaimers, or other legal notices that are included in the Software.

1.2.3 Termination

This license and your right to use this Software automatically terminates if you fail to comply with
any provision of this license agreement.

1.3 Rights

AlazarTech retains all rights not expressly granted. Nothing in this agreement constitutes a waiver
of AlazarTech’s rights under the Canadian and U.S. copyright laws or any other Federal or State
law.

1.4 Limited Warranty

Although AlazarTech has tested the Software and reviewed the documentation, ALAZARTECH
MAKES NO WARRANTY OF REPRESENTATION, EITHER EXPRESSED OR IMPLIED, WITH RE-
SPECT TO THIS SOFTWARE OR DOCUMENTATION, ITS QUALITY, PERFORMANCE, MER-
CHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS SOFTWARE
AND DOCUMENTATION IS LICENSED “as is” AND YOU, THE LICENSEE, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE. IN NO EVENT WILL ALAZARTECH BE
LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THIS SOFTWARE OR DOCUMENTATION, even if
advised of the possibility of such damages. In particular, AlazarTech shall have no liability for any
data acquired, stored or processed with this Software, including the costs of recovering such data.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESSED OR IMPLIED. No AlazarTech dealer, agent or employee
is authorized to make any modifications or additions to this warranty.

Information in this document is subject to change without notice and does not represent a commit-
ment on the part of AlazarTech. The Software described in this document is furnished under this
license agreement. The Software may be used or copied only in accordance with the terms of the
agreement.

4 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

Some jurisdictions do not allow the exclusion of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty
gives you specific legal rights, and you may also have other rights, which vary from jurisdiction to
jurisdiction.

©2008-2024 Alazar Technologies Inc. 5

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

6 ©2008-2024 Alazar Technologies Inc.

CHAPTER
TWO

INTRODUCTION

The ATS-GPU SDK provides a framework to allow real-time processing of data from AlazarTech PCle
digitizers on a CUDA-enabled GPU. This programmer’s guide covers the use of ATS-GPU-BASE.

ATS-GPU-BASE internally calls ATS-CUDA, which is a wrapper library for simple CUDA calls. ATS-
CUDA is described in more detail later in this guide in the section ATS-CUDA.

This document assumes that the reader is familiar with ATS-SDK, the standard interface for pro-
gramming AlazarTech digitizers. Having a copy of the ATS-SDK manual available can be helpful,
since many references to ATSApi functions are done here. The latest version of the ATS-SDK manual
can be downloaded free of charge from AlazarTech’s website.

In addition, expertise in CUDA programming is assumed. This is particularly important for users
wishing to use ATS-GPU-BASE, because this task involves CUDA programming.

It is also essential for programmers to have in-depth knowledge of GPU architecture and parallel
programming.

Legend ATS-GPU Based
User Application

— Control

e=={> Data Flow

CUDA Runtime

!)

AlazarTech Driver NVIDIA Driver

5 GPU

g

AlazarTech
Digitizer Card

https://www.alazartech.com

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

8 ©2008-2024 Alazar Technologies Inc.

CHAPTER
THREE

PREREQUISITES

3.1 System requirements

This software requires a PC with a CUDA-enabled GPU, and sufficient CPU resources to supply data
to the GPU at the desired data acquisition rate. It was tested with GeForce GTX Titan X (Maxwell),
GeForce GTX980 and Quadro P5000. DDR4 memory and a modern chipset (X99, X299) will greatly
improve transfer speed and overall performance.

Supported operating systems
64-bit Windows and 64-bit Linux operating systems are supported. Please verify that your
Linux distribution is supported by NVIDIA , which supplies the CUDA toolkit required to use
ATS-GPU.

Compiler support
CMake is required to build C/C++ code. CMake files are provided. On Linux, a C++11
compiler is required to build the library. On older Red Hat distributions, a devtoolset can
be obtained to use a more recent version of gcc that supports C++11. NVCC is required to
compile the example code, this compiler is included with CUDA toolkit.

CUDA driver requirements
In order to use ATS-GPU, you must install the appropriate driver for your CUDA-enabled GPU.
Drivers can be downloaded at https://www.nvidia.com/Download/index.aspx.

Note: Under Windows operating systems, dynamic link libraries releated to ATS-GPU-BASE
are installed by default in %WINDIR%System32. For applications to link approripately to them,
%WINDIR%System32 must be added to the Windows PATH Environment Variable.

http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements
https://www.nvidia.com/Download/index.aspx

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

3.2 Programming experience

Users who wish to use ATS-GPU-BASE to create high-performance custom kernels must have ex-
pertise in CUDA programming.

It is also essential for programmers to have in-depth knowledge of GPU architecture and parallel
programming.

10 ©2008-2024 Alazar Technologies Inc.

CHAPTER
FOUR

ATS-GPU-BASE

ATS-GPU-BASE is designed to provide highly efficient code to transfer data from an ATS PCle dig-
itizer to a CUDA-enabled GPU for processing. This transfer is done using multiple DMA transac-
tions. The user application, which includes custom CUDA kernels, can then access data buffers on
the GPU. The user is then responsible to perform data processing and copy data back to the CPU if
required. A code example is provided as an example of a user application that performs very simple
signal processing (data inversion).

4.1 Usage
ADC Data Host ATS-GPU GPU Custom
Computer) GPU
from ATS RAM managed Memory Kernels
Digitizer transfer

ft

ATS-GPU Data Flow

ATS-GPU-BASE offers several functions that behave similarly to ATSApi functions. Please refer to
the ATS-SDK guide for more details about these APIs. Obtaining a board handle and configuring
the board (sampling rate, trigger, input channels, etc.) is performed directly using functions from
the ATS-SDK. By convention, the code samples define a ConfigureBoard() function that handles all
these tasks.

if (!ConfigureBoard(boardHandle)) {
// Error handling

b

During the lifetime of an application, multiple acquisitions can take place. If the board configura-
tion parameters do not change, it is not necessary to call ConfigureBoard() again.

The next step is to select the CUDA-enabled GPU to use for the data transfer. This call is optional.
If you only have one CUDA capable GPU on your computer, you can skip it.

11

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

rc = ATS_GPU_SetCUDAComputeDevice(boardHandle, devicelIndex);
// Error handling

We must then setup parameters of the acquisition to GPU. This function replaces the call
to AlazarBeforeAsyncRead() in normal programs. Parameters were kept as close as possi-
ble to those of AlazarBeforeAsyncRead() to ease transition between standard acquisitions and
ATS-GPU acquisitions. To maximize performance, sample interleave should be enabled with
ADMA_INTERLEAVE_SAMPLES.

rc = ATS_GPU_Setup(boardHandle, channelSelect, transferOffset,
transferLength, recordsPerBuffer, recordsPerAcquisition,
autoDMAFlags, ATSGPUFlags);

// Error handling

We then allocate memory on the GPU for data to be transferred to, and we post those buffers to
the board. For this purpose, we use ATS_GPU_AllocBuffer(). This function allocates a buffer on
the GPU and sets up all the intermediary state necessary for ATS-GPU to successfully transfer data.
Please note that if you would like to send data back from the GPU to your computer’s RAM after
having processed it, you will need to allocate memory independently of the AlazarTech APIs.

for (size_t i = 0; i < buffers_to_allocate; i++)

{
buffers[i] = ATS_GPU_AllocBuffer(boardHandle, bytesPerBuffer);
rc = ATS_GPU_PostBuffer(boardHandle,
buffers[i],
bytesPerBuffer);
// Error handling
3

We can then start the acquisition. The board will directly start acquiring data, assuming it receives
triggers, and data transfer to posted GPU buffers will also start immediately.

rc = ATS_GPU_StartCapture(HANDLE boardHandle);
// Error handling

Once acquisition is started, ATS_GPU_GetBuffer() must be called as often as possible to retrieve
a buffer containing data already copied on the GPU. This buffer can then be processed by your
custom kernel on the GPU. When a buffer is done being used (either data has been copied to a
different buffer or processing is complete), the buffer needs to be posted back to the board.

for (size_t i; i < buffers_per_acquisition; i++)
{
rc = ATS_GPU_GetBuffer(boardHandle,
buffers[i],
timeout_ms,
nullptr);
(continues on next page)

12 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

(continued from previous page)

// TODO: Error handling

// TODO: Process buffer. This is where you can call your own processing
// function that launches the GPU kernels, such as ProcessBuffer()
// in the code samples.

ProcessBuffer(buffers[i], bytesPerBuffer);

rc = ATS_GPU_PostBuffer(boardHandle, buffer, bytesPerBuffer);

When acquisition is complete, ATS_GPU_AbortCapture() must be called. Buffers allocated with
ATS_GPU_AllocBuffer() should then be freed with ATS_GPU_FreeBuffer().

RETURN_CODE ATS_GPU_AbortCapture(HANDLE boardHandle);

for (size_t i = 0; i < number_of_buffers; i++)

{
rc = ATS_GPU_FreeBuffer(boardHandle, buffers[i]);
// Error handling

Here is an example of what the function to process data on the GPU can look like. Since this
contains code that is executed on the GPU, it needs to be located in a file with a . cu extension:

extern “C”__global__ void ProcessBuffer(void* buffer, bytesPerBuffer)

{
int idx = blockDim.x * blockIdx.x + threadIdx.x;

// TODO: Do processing here

}
Bool ProcessBuffer(voidx buffer, U32 bytesPerBuffer)
{
// Launch ProcessBuffer CUDA kernel
ProcessBuffer<<<threadsPerBlock, BlocksPerGrid>>>(buffer, bytesPerBuffer);
// Copy result from GPU memory to CPU memory
cudaMemcpy (resultBuffer,buffer,bytesPerBuffer);
}

©2008-2024 Alazar Technologies Inc. 13

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

4.2 Performance guidelines

While GPU solutions are highly customizable and can reach very high processing speeds, care must
be taken to preserve performance. The provided libraries use streams to maximise concurrency and
hide latency associated with data transfers. The processing functions are optimized to provide the
best performance and modifying them can result in a loss of performance. Refer to the CUDA best
practices guide for more information on how to improve performance.

Warning: When developing CUDA code, it is very important to check memory accesses with
a dedicated tool, as bad memory accesses will not necessarily trigger an error but will lead to
bad behavior and can cause a crash. The CUDA toolkit provides the necessary memory checking
utilities.

Because data is DMAd from ATS board to host memory then to GPU memory, speed of host com-
puter memory will influence performance. DDR4 memory and a modern chipset (X99, X299, etc.)
will greatly improve transfer speed and overall performance.

4.3 Benchmarks

Performance benchmarks using the optional OCT signal processing library and NVIDIA GeForce
GTX Titan X (Maxwell) GPU on an ASUS X99 Deluxe motherboard with an Intel i9-7900X 3.3 GHz
CPU, and 2133 MHz DDR4 memory (32 GB RAM):

PCle Link Speed Transfer Rate

Gen 3x8: ATS9373, ATS9371 Up to 6.9
GB/s

Gen 2x8: ATS9360, ATS9416 Up to 3.5
GB/s

Gen 2x4: ATS9352 Gen 1x8: ATS9870, ATS9350, ATS9351, ATS9625, ATS9626, Up to 1.6

ATS9440 GB/s

Gen 1x4: ATS9462 Up to 720
MB/s

Gen 1x1: ATS9146, ATS9130, ATS9120 Up to 200
MB/s

14 ©2008-2024 Alazar Technologies Inc.

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#axzz4cGxP6eNR
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#axzz4cGxP6eNR

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

4.4 API Reference

Note: Errors from ATS-GPU-BASE will be logged in ATS GPU.log. Relevant information about the
error will be logged here and can be useful for debugging. For Windows users log file is located in
%TEMP%. For Linux users log file is located in /tmp/.

RETURN_CODE ATS_GPU_Setup(HANDLE boardHandle, U32 channelSelect, long transferOffset,

U32 transferLength, U32 recordsPerBuffer, U32

recordsPerAcquisition, U32 autoDMAFlags, U32 ATSGPUFlags)

Prepares the ATS board and GPU for acquisition.

This function calls AlazarBeforeAsyncRead() internally and most parameters are passed di-
rectly to it. In addition, it sets up the GPU for DMA transfers

Parameters

boardHandle — Handle to the board.

channelSelect — Channel mask with each channel identifier OR’d
transferOffset — pass a negative integer for pretrigger samples
transferLength — Number of samples in a record or transfer

recordsPerBuffer — Number of records in a buffer, 1 for triggered stream-
ing and continuous streaming modes.

recordsPerAcquisition — Total number of records in the acquisition. Pass
Ox7FFFFFFF for infinite.

autoDMAFlags — ATSApi flags for AlazarBeforeAsyncRead

ATSGPUFlags — Combination of elements from ATS GPU _SETUP FLAG ORd
together. Pass O for default

©2008-2024 Alazar Technologies Inc.

15

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

void *ATS_GPU_AllocBuffer (HANDLE boardHandle, U32 bytesPerBuffer, cudaStream t *stream)
Allocates page-aligned pinned memory for ATS and GPU boards.

This function can be called after ATS GPU Setup to perform the necessary mem-
ory allocations. This function returns a GPU or CPU buffer pointer depending on
ATS _GPU_SETUP FLAG values used in the setup.

Parameters

¢ boardHandle — Handle to the board

* bytesPerBuffer — Total number of bytes to allocate per buffer

¢ stream — CUDA stream associated to the allocated buffer.

16 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_GPU_PostBuffer (HANDLE boardHandle, void *buffer, U32 bytesPerBuffer)
Signal the library a particular buffer can be used for data transfer.

This function is the equivalent of AlazarPostAsyncBuffer for ATS GPU. Buffers posted must
have previously been allocated with ATS GPU_AllocBuffer.

Parameters
* boardHandle — Handle to the board
* buffer — Pointer to a previously allocated buffer

* bytesPerBuffer — Size in bytes of the buffer, must be the same size as setup
for the acquisition.

©2008-2024 Alazar Technologies Inc. 17

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_GPU_GetBuffer (HANDLE boardHandle, void *buffer, U32 timeout m:s,
cudaStream_t *stream)

Get processed buffer.

This function must be called at average rate that is equal to or greater than the rate at which
DMA buffers complete. This function returns the GPU-processed buffer.

Parameters
¢ boardHandle — Handle to the board
¢ buffer — Pointer to the buffer

* timeout_ms — Time the board will wait for a trigger before throwing an
error.

* stream — CUDA stream associated to the processed buffer. Subsequent pro-
cessing of processed buffer should occurs on this CUDA stream.

Returns
ApiSuccess (512) if the board received sufficient triggers to fill a DMA buffer.

Returns
ApiNotInitialized if ATS_StartCapture was not called before calling this
function, or it was called and failed.

Returns
ApiInvalidHandle The boardHandle parameter is not valid.

Returns
ApiBufferOverflow if the board filled all the available DMA buffers and its
on-board memory. This may happen if the acquisition rate exceeds the bus
bandwidth or the GPU processing bandwidth.

Returns
ApiWaitTimeout if the timeout interval expired before the board received a
sufficient number of triggers to fill a buffer.

Returns
ApiFailed if a system of internal error occurred.

18 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_GPU_AbortCapture (HANDLE boardHandle)
Stops the acquisition.

Aborts an acquisition, stops data processing, and releases resources allocated by
ATS GPU _Setup()

Parameters
boardHandle — Handle to the board

Returns
ApiSuccess

©2008-2024 Alazar Technologies Inc. 19

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_GPU_FreeBuffer (HANDLE boardHandle, void *buffer)
Free buffers allocated with ATS GPU_AllocBuffer();.

Parameters
¢ boardHandle — Handle to the board
* buffer — Buffer pointer allocated by ATS GPU AllocBuffer()

20 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_GPU_GenerateCPUBoxcarFunction(float *boxcarFunction, U32
samplesPerRecord, U32 gateDelay, U32
gateWidth)

Generates a boxcar gate on the CPU, of length samplesPerRecord.
Parameters

* boxcarFunction — Array to be filled with the boxcar function. It must have
a length of samplesPerRecord.

* samplesPerRecord — Samples per record.
* gateDelay — Delay of the boxcar gate in number of samples.
* gateWidth — Width of the boxcar gate in number of samples.

Returns
Pointer to an array of float elements that contains the boxcar window generated
on the CPU.

©2008-2024 Alazar Technologies Inc. 21

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_GPU_GetVersion(U8 *major, U8 *minor, U8 *revision)
Get ATS-GPU version number.

Parameters
* major — ATS-GPU major version number.
* minor — ATS-GPU minor version number.

¢ revision — ATS-GPU revision number.

22 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_GPU_QueryCUDADeviceCount (U32 *pDeviceCount)
Function to get the number of available CUDA devices.

Parameters
pDeviceCount — Outputs the number of devices detected on the system.

Returns
ApiSuccess if it succeeded.

Returns
ApiFailed if the GPU driver returned an error.

©2008-2024 Alazar Technologies Inc. 23

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_GPU_QueryCUDADeviceName (U32 devicelndex, char *deviceName, int
maxChars)

Function to get the name of a specific CUDA device.
Parameters
* deviceIndex — 0-based index to the device.
* deviceName — Char array to output the name of the device.
* maxChars — Size of the char array.

Returns
ApiSuccess if it succeeded.

Returns
ApiFailed if the GPU driver returned an error.

Returns
ApiInvalidIndex if the index provided is greater than the number of platforms
or devices available.

24 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_GPU_SetCUDAComputeDevice (HANDLE boardHandle, U32 devicelndex)
CUDA-specific function used to associate a CUDA-enabled GPU device with a digitizer board.

Allows you to specify which GPU should be used to process sample data from a digitizer, if
more than one GPU is available.

Parameters
¢ boardHandle — Handle to the ATS board.
¢ deviceIndex — 0-based index to the CUDA device.

Returns
ApiSuccess if it succeeded.

Returns
ApiFailed if it failed. See %TEMP%/ATS_GPU.log (/tmp/ATS_GPU.log under
Linux) for more information.

©2008-2024 Alazar Technologies Inc. 25

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

enum ATS_GPU_SETUP_FLAG

GPU data transfer configuration options.

Values:

enumerator ATS_GPU_SETUP_FLAG_CPU_BUFFER
Makes ATS-GPU deliver CPU buffers instead of GPU ones. Useful for debugging

enumerator ATS_GPU_SETUP_FLAG_DEINTERLEAVE

De-interleave the data in the returned GPU buffer. Does not apply in conjunction with
ATS_GPU_SETUP_FLAG_CPU_BUFFER

enumerator ATS_GPU_SETUP_FLAG_UNPACK

Unpack the data in the returned GPU buffer. It is required for the allocated buffers to
be large enough to accommodate unpacked data. Does not apply in conjunction with
ATS_GPU_SETUP_FLAG_CPU_BUFFER

26 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

struct _InputRange

Structure used to convert data to volts.

Public Members

float maxValue

Maximum input range value in volts.

float minvalue

Minimum input range value in volts.

©2008-2024 Alazar Technologies Inc.

27

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

28 ©2008-2024 Alazar Technologies Inc.

CHAPTER
FIVE

ATS-CUDA

The ATS-CUDA SDK provides a framework to allow users to perform simple manipulations on
CUDA-enabled GPUs. ATS-CUDA is designed to be used with ATS-GPU-BASE, but can also be used
independently. This section of the programmer’s guide covers the use of ATS-CUDA.

As with ATS-GPU-BASE, using ATS-CUDA requires expertise in CUDA programming because this
involves writing custom CUDA kernels.

It is also essential for programmers to have in-depth knowledge of GPU architecture and parallel
programming.

5.1 API Reference

Note: Errors from ATS-CUDA-BASE will be logged in ATS GPU.log. Relevant information about
the error will be logged here and can be useful for debugging. For Windows users log file is located
in %TEMP%. For Linux users log file is located in /tmp/.

enum ATS_CUDA_Input_DataType
Input data types that can be provided.

Values:

enumerator ATS_CUDA_INPUT_FORMAT_US8

enumerator ATS_CUDA_INPUT_FORMAT_U16

enumerator ATS_CUDA_INPUT_FORMAT_FLOAT

enumerator ATS_CUDA_INPUT_FORMAT_COMPLEXFLOAT

enumerator ATS_CUDA_INPUT_FORMAT_S8

29

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

enumerator ATS_CUDA_INPUT_FORMAT_S16

30 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

enum ALAZAR_PACKING
Types of data packing.

Values:

enumerator PACKING_16_BITS_PER_SAMPLE

enumerator PACKING_12_BITS_PER_SAMPLE

enumerator PACKING_8_BITS_PER_SAMPLE

©2008-2024 Alazar Technologies Inc. 31

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

struct UNPACK_DEINTERLEAVE_OPTIONS

Structure wused to set up unpacking and deinterleaving kernel wused in
ATS CUDA BaseProcessBuffer().

Public Members

bool unpack

Flag to activate unpacking;.

bool deinterleave

Flag to activate deinterleaving.

U32 transferLength

Number of samples per record per channel.

U32 recordsPerBuffer

Number of records per buffer per channel.

U32 channelCount

channelCount Number of active channels

ALAZAR_PACKING input_pack_mode
A member of ALAZAR PACKING indicating the data packing mode of input buffer

ALAZAR_PACKING output_pack_mode

A member of ALAZAR PACKING indicating the desired output data packing. Ignored if
unpack is set to 0.

ALAZAR _INTERLEAVING input_interleave
A member of ALAZAR INTERLEAVE indication the data interleaving of the input buffer

32 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

void *ATS_CUDA_AllocCPUBuffer(U32 bytesPerBuffer)
Allocates page-locked memory on the host computer.

This function is used to allocate host memory and is accessible to the device. Memory can be
accessed directly by the device and can be written or read at high bandwidth.

Parameters
bytesPerBuffer — Total number of bytes to allocate per buffer

Returns
This function returns a CPU buffer pointer.

©2008-2024 Alazar Technologies Inc.

33

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

void *ATS_CUDA_AllocGPUBuffer (U32 bytesPerBuffer)
Allocates memory on the device.

This function is used to allocate memory on the device.

Parameters
bytesPerBuffer — Total number of bytes to allocate per buffer

Returns
This function returns a GPU buffer pointer.

34 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_AverageRecords (void *GPUBufferIn, void *GPUBufferOut,

cudaStream_t stream, U32
samplesPerRecordPerChannel, U32
recordsPerBufferIn, U32 recordsPerBufferOut, U32
channelCount, ATS CUDA_Input DataType
inputDataType)

Launches on the GPU a kernel to average records in a buffer.

Parameters

GPUBufferIn — Pointer to the GPU buffer to be averaged.
GPUBufferOut — Pointer to the averaged output GPU buffer.
stream — Stream identifier on which processing is to take place.
samplesPerRecordPerChannel — Samples per record per channel.
recordsPerBufferIn — Number of records in the input GPU buffer

recordsPerBufferOut — Desired number of records in the averaged GPU
buffer

channelCount — Number of input channels.

inputDataType. — Data type of the input data. This parameter must receive
one element of ATS CUDA_Input DataType.

©2008-2024 Alazar Technologies Inc. 35

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_BaseProcessBuffer (void *GPUBufferIn, void *GPUBufferOut,
cudaStream_t stream,
UNPACK DEINTERLEAVE OPTIONS opt)

Launches on the GPU a kernel to unpack and/or deinterleave a buffer acquired with an
AlazarTech digitizer.

Parameters

* GPUBufferIn — Pointer to a GPU buffer to on which to apply unpack-
ing/deinterleaving.

* GPUBufferOut — Pointer to a GPU buffer where data is to be outputted.
* stream - Stream identifier on which processing is to take place

* opt — Structure that defines how the unpacking and deinterleaving kernel
is to be configured. See UNPACK _DEINTERLEAVE OPTIONS.

36 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_ConvertToVolts(void *GPUBufferIn, void *GPUBufferOut, U32

samplesPerRecord, U32 recordsPerBuffer, U32
channelCount, InputRange *Ranges,

ATS CUDA _Input DataType inputDataType,
cudaStream_t stream)

Launches on the GPU a kernel to convert raw data in float32, and optionally convert the data

to volts.

Parameters

GPUBufferIn — Pointer to the GPU buffer of records to be converted.
GPUBufferOut — Pointer to the GPU buffer of records in float32.
samplesPerRecord — Samples per record.

recordsPerBuffer — Records per buffer.

channelCount — Number of input channels.

Ranges — Pointer to the structure with maximum and minimum input range
values in volts for each input channel. See InputRange. If nullptr is passed,
just convert data to float.

inputDataType — Data type of the input data. This parameter must receive
one element of ATS CUDA Input DataType.

stream — Stream identifier on which processing is to take place.

©2008-2024 Alazar Technologies Inc. 37

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_CopyDeviceToHost (void *GPUBuffer, void *CPUBuffer, U32
bytesPerBuffer, cudaStream_t stream)

Copies data between host and device.
Parameters
* GPUBuffer — Pointer to the GPU source memory address
* CPUBuffer — Pointer to the CPU destination memory address
* bytesPerBuffer — Size in bytes of the buffer to copy

* stream — Stream identifier on which the copy takes place

38 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_CopyHostToDevice (void *GPUBuffer, void *CPUBuffer, U32
bytesPerBuffer, cudaStream_t stream)

Copies data between host and device.
Parameters
* GPUBuffer — Pointer to the GPU destination memory address
* CPUBuffer — Pointer to the CPU source memory address
* bytesPerBuffer — Size in bytes of the buffer to copy

* stream — Stream identifier on which the copy takes place

©2008-2024 Alazar Technologies Inc. 39

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

cudaStream_t ATS_CUDA_CreateStream()
Create a synchronous stream.

This function returns a pointer to the new stream identifier.

40 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_DestroyStream(cudaStream t stream)
Destroys and cleans up an asynchronous stream.

Parameters
stream — Stream identifier.

©2008-2024 Alazar Technologies Inc. 41

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_FreeCPUBuffer (void *CPUBuffer)
Frees page-locked memory.

This function is used to free host memory allocated by ATS CUDA_AllocCPUBuffer().

Parameters
CPUBuffer — Pointer to the memory to free

42 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_FreeGPUBuffer (void *GPUBuffer)
Frees memory on the device.

This function is used to free GPU memory allocated by ATS CUDA_AllocGPUBuffer().

Parameters
GPUBuffer — Pointer to the device memory to free

©2008-2024 Alazar Technologies Inc. 43

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_GetVersion(U8 *major, U8 *minor, U8 *revision)
Get ATS-CUDA version number.

Parameters
* major — ATS-CUDA major version number.
e minor — ATS-CUDA minor version number.

¢ revision — ATS-CUDA revision number.

44 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_GetComputeCapability(U32 devicelndex, int *major, int *minor)
Function to get the compute capability of specified GPU.

Parameters
* deviceIndex — 0-based index to the device.
* major — Major compute capability version number.
* minor — Minor compute capability version number.

Returns
ApiSuccess if it succeeded.

Returns
ApiFailed if it failed. See %TEMP%/ATS_GPU.log (/tmp/ATS_GPU.log under
Linux) for more information.

©2008-2024 Alazar Technologies Inc. 45

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_MultiplyRecords(void *GPUBufferIn, void *multiplierRecord, void

*GPUBufferOut, U32 samplesPerRecord, U32
recordsPerBuffer, ATS CUDA _Input DataType
inputDataType, cudaStream_t stream)

Launches on the GPU a kernel to multiply the records by a reference record.

Parameters

GPUBufferIn — Pointer to the GPU buffer of records to be multiplied.

multiplierRecord — Pointer to the reference record multiplying the
records.

GPUBufferOQut — Pointer to the multiplication result GPU buffer.
samplesPerRecord — Samples per record.
recordsPerBuffer — Records per buffer.

inputDataType — Data type of the input data. This parameter must receive
one element of ATS CUDA Input DataType.

stream — Stream identifier on which processing is to take place.

46

©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_QueryDeviceCount (U32 *pDeviceCount)
Function to get the number of available CUDA devices.

Parameters
pDeviceCount — Outputs the number of devices detected on the system.

Returns
ApiSuccess if it succeeded.

Returns
ApiFailed if the CUDA driver returned an error.

©2008-2024 Alazar Technologies Inc. 47

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_QueryDeviceName (U32 devicelndex, char *deviceName, int maxChars)
Function to get the name of a specific CUDA device.

Parameters
* deviceIndex — 0-based index to the device.
* deviceName — Char array to output the name of the device.
* maxChars — Size of the char array.

Returns
ApiSuccess if it succeeded.

Returns
ApiFailed if the CUDA driver returned an error.

Returns
ApiInvalidIndex if the index provided is greater than the number of platforms
or devices available.

48 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_SetComputeDevice (U32 devicelndex)

Allows you to specify which GPU should be used to process sample data from a digitizer, if
more than one GPU is available.

Parameters
deviceIndex — O-based index to the device.

Returns
ApiSuccess if it succeeded.

Returns
ApiFailed if it failed. See %TEMP%/ATS_GPU.log (/tmp/ATS_GPU.log under
Linux) for more information.

©2008-2024 Alazar Technologies Inc. 49

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_StreamSynchronize(cudaStream_t stream)
Waits for a stream to complete.

This function blocks the host thread until stream has completed all operations.

Parameters
stream — Stream identifier.

50 ©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

bool ATS_CUDA_StreamQuery (cudaStream_t stream)
Queries a synchronous stream for completion status.

This function blocks the host thread until stream has completed all operations.

Parameters
stream — Stream identifier.

Returns
This function returns 1 if all operations in stream have completed.

Returns
This function returns O if not.

©2008-2024 Alazar Technologies Inc. 51

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_SeparateDataFromNPTFooters (void *GPUBufferIn, void *GPUDataOut,

U32 numberOfRecords, U32
bytesPerFooterBlock, U32
footerBlockStrideBytes, cudaStream _t

stream)
Launches on the GPU a kernel to extract the digitized data from buffers containing NPT
footers.
Parameters

GPUBufferIn — Pointer to a GPU buffer of raw data acquired with an ATS
board containing NPT footers.

GPUDataOut — Pointer to a GPU buffer where the raw data is to be extracted.
numberOfRecords — Number of records in GPUBufferIn.
bytesPerFooterBlock — Number of bytes per NPT footer block.

footerBlockStrideBytes — Distance in bytes between two consecutive NPT
footer blocks.

stream — Stream identifier on which processing is to take place.

52

©2008-2024 Alazar Technologies Inc.

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

RETURN_CODE ATS_CUDA_ExtractNPTFooters(void *GPUBufferIn, void *GPUFooters, U32
numberOfRecords, U32 bytesPerFooterBlock, U32
footerBlockStrideBytes, cudaStream_t stream)

Launches on the GPU a kernel to extract NPT footers from buffers containing NPT footers.
Parameters

* GPUBufferIn — Pointer to a GPU buffer of raw data acquired with an ATS
board containing NPT footers.

* GPUFooters — Pointer to a GPU buffer where the NPT footers are to be
extracted.

* numberOfRecords — Number of records in GPUBufferIn.
* bytesPerFooterBlock — Number of bytes per NPT footer block.

* footerBlockStrideBytes — Distance in bytes between two consecutive NPT
footer blocks.

* stream — Stream identifier on which processing is to take place.

©2008-2024 Alazar Technologies Inc. 53

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

54 ©2008-2024 Alazar Technologies Inc.

Symbols

_InputRange (C++ struct), 27
_InputRange: :maxValue (C++ member), 27
_InputRange: :minValue (C++ member), 27

A

ALAZAR_PACKING (C++ enum), 31

ALAZAR_PACKING: : PACKING_12_BITS_PER_SAMPLE
(C++ enumerator), 31

ALAZAR_PACKING: : PACKING_16_BITS_PER_SAMPLE
(C++ enumerator), 31

ALAZAR_PACKING: : PACKING_8_BITS_PER_SAMPLE
(C++ enumerator), 31

ATS_CUDA_AllocCPUBuffer (C++ function), 33

ATS_CUDA_AllocGPUBuffer (C++ function), 34

ATS_CUDA_AverageRecords (C++ function), 35

ATS_CUDA_BaseProcessBuffer (C++ function),
36

ATS_CUDA_ConvertToVolts (C++ function), 37

ATS_CUDA_CopyDeviceToHost (C++ function),
38

ATS_CUDA_CopyHostToDevice (C++ function),
39

ATS_CUDA_CreateStream (C+ + function), 40

ATS_CUDA_DestroyStream (C++ function), 41

ATS_CUDA_ExtractNPTFooters (C++ function),
53

ATS_CUDA_FreeCPUBuffer (C++ function), 42

ATS_CUDA_FreeGPUBuffer (C++ function), 43

ATS_CUDA_GetComputeCapability (C++ func-
tion), 45

ATS_CUDA_GetVersion (C++ function), 44

ATS_CUDA_Input_DataType (C++ enum), 29

INDEX

ATS_CUDA_Input_DataType: :ATS_CUDA_INPUT_FORMAT_S16
(C++ enumerator), 29
ATS_CUDA_Input_DataType: :ATS_CUDA_INPUT_FORMAT_S8
(C++ enumerator), 29
ATS_CUDA_Input_DataType: :ATS_CUDA_INPUT_FORMAT_U16
(C++ enumerator), 29
ATS_CUDA_Input_DataType: :ATS_CUDA_INPUT_FORMAT_U8
(C++ enumerator), 29
ATS_CUDA_MultiplyRecords (C++ function), 46
ATS_CUDA_QueryDeviceCount (C++ function),
47
ATS_CUDA_QueryDeviceName (C+ + function), 48
ATS_CUDA_SeparateDataFromNPTFooters (C++
function), 52
ATS_CUDA_SetComputeDevice (C++ function),
49
ATS_CUDA_StreamQuery (C++ function), 51
ATS_CUDA_StreamSynchronize (C++ function),
50
ATS_GPU_AbortCapture (C++ function), 19
ATS_GPU_AllocBuffer (C++ function), 16
ATS_GPU_FreeBuffer (C++ function), 20
ATS_GPU_GenerateCPUBoxcarFunction (C++
function), 21
ATS_GPU_GetBuffer (C++ function), 18
ATS_GPU_GetVersion (C++ function), 22
ATS_GPU_PostBuffer (C++ function), 17
ATS_GPU_QueryCUDADeviceCount (C++ func-
tion), 23
ATS_GPU_QueryCUDADeviceName (C++ function),
24
ATS_GPU_SetCUDAComputeDevice (C++ func-
tion), 25

ATS_CUDA_Input_DataType: :ATS_CUDA_INPUT_FORMATS CORIBLEREURAE + + function), 15

(C++ enumerator), 29

ATS_GPU_SETUP_FLAG (C+ + enum), 26

ATS_CUDA_Input_DataType: : ATS_CUDA_INPUT_FORMATS FGRIATSETUP_FLAG: : ATS_GPU_SETUP_FLAG_CPU_BUFFER

(C++ enumerator), 29

(C+ + enumerator), 26

55

ATS-GPU-BASE Programmer’s Guide, Release 24.1.0

ATS_GPU_SETUP_FLAG: : ATS_GPU_SETUP_FLAG_DEINTERLEAVE

(C++ enumerator), 26

ATS_GPU_SETUP_FLAG: : ATS_GPU_SETUP_FLAG_UNPACK

(C++ enumerator), 26

U

UNPACK_DEINTERLEAVE_OPTIONS
32

UNPACK_DEINTERLEAVE_OPTIONS:

(C++ member), 32

UNPACK_DEINTERLEAVE_OPTIONS:

(C++ member), 32

UNPACK_DEINTERLEAVE_OPTIONS: :

(C++ member), 32

UNPACK_DEINTERLEAVE_OPTIONS:

(C++ member), 32

UNPACK_DEINTERLEAVE_OPTIONS:

(C++ member), 32

UNPACK_DEINTERLEAVE_OPTIONS: :

(C++ member), 32

UNPACK_DEINTERLEAVE_OPTIONS:

(C++ member), 32

UNPACK_DEINTERLEAVE_OPTIONS:

member), 32

(C++ struct),

:channelCount

:deinterleave

input_interleave

:input_pack_mode

:output_pack_mode

recordsPerBuffer

:transferLength

:unpack (C++

56

©2008-2024 Alazar Technologies Inc.

	License Agreement
	Important
	Ownership
	Grant of License
	Restrictions
	Termination

	Rights
	Limited Warranty

	Introduction
	Prerequisites
	System requirements
	Programming experience

	ATS-GPU-BASE
	Usage
	Performance guidelines
	Benchmarks
	API Reference

	ATS-CUDA
	API Reference

	Index

