
ATS-GMA-OCT Programmer’s Guide
Release 4.0.0

AlazarTech

Apr 16, 2018

Contents
1 Introduction 1

2 Prerequisites 2
2.1 System requirements . 2

3 ATS-GMA-OCT 2
3.1 Usage . 2
3.2 Benchmarks . 5
3.3 ATS_GMA_OCT.log file . 5
3.4 API Reference . 6

Index 21

1 Introduction
ATS-GMA-OCT provides a framework to allow real-time OCT data processing from AlazarTech PCIe
digitizers on a compatible AMD Radeon Pro GPU.

This document assumes that the reader is familiar with ATS-SDK, the standard interface for pro-
gramming AlazarTech digitizers. Having a copy of the ATS-SDK manual available can be helpful,
since many references to ATSApi functions are done here. The latest version of the ATS-SDK manual
can be downloaded free of charge from AlazarTech’s website.

Copyright ©2018 AlazarTech. All rights reserved.

http://www.alazartech.com

2 Prerequisites
2.1 System requirements
This software requires a PC with an AMD-compatible GPU. It was tested with Radeon Pro WX7100
(Polaris) and Radeon Pro WX9100 (Vega). A modern chipset (X99, X299) will greatly improve
transfer speed and overall performance.

Supported operating systems 64 bit Windows 7 and 10 operating system are supported.

Supported AlazarTech drivers ATS-GMA-OCT requires driver version 6.1 and above.

Compiler support The C++ code was written with Microsoft Visual C++ 2015, and requires
Microsoft Visual C++ 2015 or later. Please note that a Community Edition of Visual Studio
is available for free. It is fully compatible with our code samples. CMake can also be used to
build C++ code. CMake files are provided.

Compatible GPUs ATS-GMA is designed to be compatible with AMD Radeon Pro GPUs using AMD
APP SDK version 2.9 and higher. It should be noted that the current version of ATS-GMA
supports only one GPU at a time. If multiple GPUs are installed in the computer, ATS-GMA
will let you select one of them.

DirectGMA To use ATS-GMA, you must first enable DirectGMA on your GPU. By default, the Direct-
GMA configuration is disabled on AMD GPUs. To enable DirectGMA on your GPU, you must
connect the monitor directly to the specific GPU, without any remote connection. You must
then open AMD FirePro Settings and go to Advanced Parameters. This will open the AMD
FirePro Control Center. Under the tab SDI/DirectGMA you can enable DirectGMA. Choose
the maximum addressable window size. For more information, visit the FirePro DirectGMA
website.

3 ATS-GMA-OCT
ATS-GMA-OCT leverages ATS-GMA-BASE to transfer data from an ATS digitizer to a GPU in a highly
efficient manner. It then takes care of doing OCT processing on the data before sending it back to
the host computer’s RAM.

3.1 Usage

Note: Installation of ATS-GMA-OCT generates a Dynamic Link Library (.dll) in
../oct/library/${arch_type}. In order to link ATS-GMA-OCT.dll to your application, you must copy
it to /Windows/System32.

ATS-GMA-OCT acquisitions are very similar to standard ATSApi acquisitions. For brevity, only the
differences are listed here.

2

https://gpuopen.com/compute-product/direct-gma/
https://gpuopen.com/compute-product/direct-gma/

The central function of the ATS-GMA-OCT interface is ATS_GMA_OCT_Setup(). This func-
tion calls its ATS-GMA-BASE counterpart ATS_GMA_Setup() internally, which in turns calls
AlazarBeforeAsyncRead(). It takes a few extra parameters:

• OCTFlags: Used to define which data type, such as amplitude and phase, to obtain from the
acquisition.

• FFTLength: This is used to select the length of the Fourier transform done on the GPU. This
value must be a power of 2, 3, 5, 7, 11, 13 or a combination of those, and it also must be
equal to or larger than the record length.

• clDevice: A pointer to the openCL device, must also be provided. This pointer should be
previously determined with ATS_GMA_GetComputeDevice().

rc = ATS_GMA_Setup(boardHandle, channelSelect, -preTriggerSamples,
samplesPerRecordPerChannel, recordsPerBuffer,
recordsPerAcquisition, FFTLength, autoDMAFlags,
ATSGMAFlags, OCTFlags, &clContext, &clDevice);

We then choose the window function applied to the acquired data before the FFT pro-
cessing phase. The most common usage pattern is to first generate a window func-
tion using ATS_GMA_OCT_GenerateWindowFunction(), then to download it to the board using
ATS_GMA_OCT_SetWindowFunction(). It is possible, however, to use entirely custom window func-
tions instead of the ones generated by the API. It is also possible to use complex window functions
by way of downloading two arrays of points: the first for the real part of the window and the other
for the imaginary one.

rc = ATS_GMA_OCT_GenerateWindowFunction(FFT_WINDOW_HANNING,
&window[0],
samplesPerRecordPerChannel);

// Error handling

rc = ATS_GMA_OCT_SetWindowFunction(boardHandle,
samplesPerRecordPerChannel,
&window[0],
NULL);

// Error handling

We then allocate memory on the GPU for data to be transferred to. For this purpose, we use
ATS_GMA_OCT_AllocBuffer(). This function allocates a buffer on the GPU, and sets up all the in-
termediary states necessary for ATS-GMA-OCT to successfully transfer data. We then post those
buffers to the board using ATS_GMA_OCT_PostBuffer().

for (int i = 0; i < numberOfBuffers; i++)
{

BufferArray[i] = ATS_GMA_OCT_AllocBuffer(boardHandle,
bytesPerResultBuffer);

}

for (int i = 0; i < numberOfGMABuffers; i++)
{

rc = ATS_GMA_OCT_PostBuffer(boardHandle,

3

BufferArray[i]);
// Error handling

}

We can then start the acquisition with ATS_GMA_OCT_StartCapture(). Once acquisition is started,
ATS_GMA_OCT_GetBuffer() must be called as often as possible to retrieve a buffer containing data
already copied on the GPU. A userBuffer contains the GPU data after unpacking and deinterleav-
ing. clQueue points to a queue created by the library on which FFT processing will be done for this
specific buffer. Use this queue for custom processing, if required. The data can then be used to do
FFT processing. FFT processing is divided into three intermediary steps :

• ATS_GMA_OCT_PreFFT() performs windowing and padding of input data in preparation for Fast
Fourier Transform.

• ATS_GMA_OCT_FFT() performs Fast Fourier Transform using the clFFT library.

• ATS_GMA_OCT_PostFFT() takes de FFT and outputs the desired data. The output is set using
ATS_GMA_OCT_OPTIONS.

When no longer needed, the buffer needs to be posted back. Finally,
ATS_GMA_OCT_ReadOutputBuffer() is used to send processed buffer back in host memory.

for (int i = 0 ; i < buffersPerAcquisition; i++)
{

rc = ATS_GMA_OCT_GetBuffer(boardHandle,
BufferArray[i],
&userBuffer,
&clQueue,
timeout_ms);

// Error handling
rc = ATS_GMA_OCT_PreFFT(boardHandle,

&ironOut_output,
&sampleToComplex_Output,
NULL,
NULL);

// Error handling
rc = ATS_GMA_OCT_FFT(boardHandle,

&sampleToComplex_Output,
&fft_output,
NULL,
NULL);

// Error handling
rc = ATS_GMA_OCT_PostFFT(boardHandle,

&fft_output,
&complexToResult_output,
NULL,
NULL);

// Error handling
rc = ATS_GMA_OCT_ReadOutputBuffer(boardHandle,

&complexToResult_output,
&pHostBuffer,
NULL,
NULL)

4

// Error handling
}

When acquisition is complete, buffers allocated with ATS_GMA_AllocBuffer() should be freed with
ATS_GMA_OCT_FreeBuffer(). ATS_GMA_OCT_AbortCapture() must then be called.

for (size_t i = 0; i < number_of_buffers; i++)
{

rc = ATS_GMA_OCT_FreeBuffer(boardHandle, BufferArray[i]);
// Error handling

}

rc = ATS_GMA_OCT_AbortCapture(HANDLE boardHandle);
// Error handling

3.2 Benchmarks
Performance benchmarks using ATS-GMA-OCT on an Asus X99 Deluxe motherboard using an
ATS9373 (8 lane PCIe Gen 3) and acquired in NPT mode :

GMAbuffer size (MB) FFT Length FFTs per second (x1000)
Radeon ProWX7100 Radeon ProWX9100

1 2048 1700 1700
4096 850 850
8192 325 375

4 2048 1900 1900
4096 950 950
8192 350 485

16 2048 1900 1900
4096 950 950
8192 350 485

3.3 ATS_GMA_OCT.log file
ATS-GMA-OCT logs relevant information about specific ATS-GMA-OCT calls in ATS_GMA_OCT.log.
Most importantly ATS_GMA_OCT.log stores information concerning errors occuring with functions
from ATS-GMA-OCT. Also refer to ATS_GMA.log for errors related to ATS-GMA.

5

3.4 API Reference
enum ATS_GMA_OCT_OPTIONS

Types of data output that are generated by the acquisition. This is used in
ATS_GMA_OCT_Setup(). Several output options can be chosen and output data will be placed
in the same output buffer, in sequential order.

Values:

ATS_GMA_OCT_LOG_OUTPUT = 1 << 0

ATS_GMA_OCT_AMPLITUDE_OUTPUT = 1 << 1

ATS_GMA_OCT_PHASE_OUTPUT = 1 << 2

ATS_GMA_OCT_REAL_OUTPUT = 1 << 3

ATS_GMA_OCT_IMAG_OUTPUT = 1 << 4

6

enum ATS_GMA_OCT_WINDOWS
Window functions that can be generated by ATS_GMA_OCT_GenerateWindowFunction()

Values:

FFT_WINDOW_NONE

FFT_WINDOW_HANNING

FFT_WINDOW_HAMMING

FFT_WINDOW_BLACKMAN

FFT_WINDOW_BLACKMAN_HARRIS

FFT_WINDOW_BARTLETT

NUM_FFT_WINDOW_ITEMS

7

RETURN_CODE ATS_GMA_OCT_GenerateWindowFunction(U32 windowType, float *window,
U32 windowLength_samples)

Generate a window function for FFT.

Parameters

• windowType: A member of the ATS_GMA_OCT_WINDOWS

• window: A pointer to a preallocated array where the window will be written.

• windowLength_samples: Number of points in the window

8

RETURN_CODE ATS_GMA_OCT_SetWindowFunction(HANDLE boardHandle, U32 samplesPer-
Record, float *realWindowArray, float
*imagWindowArray)

Set window function on the GPU used in FFT calculation.

Parameters

• boardHandle: Handle to the board

• samplesPerRecord: Length of the window, equal to the number of samples per FFT.

• realWindowArray: Pointer to array of size samplesPerRecord that contains the real
part of the window. Passing null is equivalent to passing an array filled with zeros.

• imagWindowArray: Pointer to array of size samplesPerRecord that contains the imag-
inary part of the window. Passing null is equivalent to passing an array filled with
zeros.

9

RETURN_CODE ATS_GMA_OCT_Setup(HANDLE boardHandle, U32 channelSelect, long trans-
ferOffset, U32 transferLength, U32 recordsPerBuffer,
U32 recordsPerAcqusition, U32 FFTLength, U32 autoD-
MAFlags, U32 ATSGMAFlags, U32 OCTFlags, cl_context
*clContext, cl_device_id *clDevice)

Prepares the ATS board and GPU for acquisition.

This function calls AlazarBeforeAsyncRead() internally and most parameters are passed di-
rectly to it. In addition, it sets up the GPU for GMA transfers.

Return ApiSuccess if it succeeded

Return An error code if it failed. See error list in the ATS-SDK manual, ATS_GMA.log and
ATS_GMA_OCT.log for more information.

Parameters

• boardHandle: Handle to the board.

• channelSelect: Channel mask with each channel identifier OR’d.

• transferOffset: pass a negative integer for pretrigger samples.

• transferLength: Number of samples in a record or transfer.

• recordsPerBuffer: Number of records in a buffer, 1 for triggered streaming and
continuous streaming modes.

• recordsPerAcquisition: Total number of records in the acquisition. Pass
0x7FFFFFFF for infinite.

• FFTLength: Length of the Fourier transform done on the GPU. This value must be a
power of 2, 3, 5, 7, 11, 13 or a combination of those. It also must be equal to or
larger than the record length.

• autoDMAFlags: ATSApi flags for AlazarBeforeAsyncRead.

• ATSGMAFlags: ATS-GMA specific flags. See ATS_GMA_SETUP_FLAG in ATS-GMA-
BASE documentation. In case of multiple channel acquisitions or data acquired
in other than 16-bits packing, ATS_GMA_SETUP_FLAG_DEINTERLEAVE and/or
ATS_GMA_SETUP_FLAG_UNPACK must be activated.

• OCTFlags: Defines the type of data output to be obtained from the OCT acquisition.
Can receive one or several element of ATS_GMA_OCT_OPTIONS.

• clContext: Pointer to an OpenCL context. Pass the address of an uninitialized
OpenCL context. This function will create a context internally and assign it to the
variable passed. If ATS_GMA_SETUP_FLAG_USER_DEFINED_CONTEXT is passed
in ATSGMAFlags, pass the address of the custom context you would like the library
to use.

• clDevice: Pointer to the OpenCL device used for acquisition. See
ATS_GMA_GetComputeDevice().

10

cl_mem ATS_GMA_OCT_AllocBuffer(HANDLE boardHandle, const U32 bytesPerBuffer)
Allocates GPU memory suitable to be used for a True DMA data transfer.

This function must be called after ATS_GMA_OCT_Setup() to perform the necessary memory
allocations. This function returns a GPU buffer. The number of allocated GMA buffers mul-
tiplied by the size of each buffers in bytes must be inferior to 128MB, which is the maximal
window size that can be allocated for DirectGMA. This window size was specified while en-
abling DirectGMA.

Return Returns a cl_mem GPU buffer.

Parameters

• boardHandle: Handle to the board.

• bytesPerBuffer: Total number of bytes to allocate per buffer.

11

RETURN_CODE ATS_GMA_OCT_PostBuffer(HANDLE boardHandle, cl_mem GpuBuffer)
Signal the library a particular buffer can be used for data transfer.

This function calls AlazarPostAsyncBuffer() internally. Buffers posted must have previously
been allocated with ATS_GMA_OCT_AllocBuffer(). It also acts as a synchronization point for
buffer acquisition and processing.

Return ApiSuccess if it succeeded

Return An error code if it failed. See error list in the ATS-SDK manual, ATS_GMA.log and
ATS_GMA_OCT.log for more information.

Parameters

• boardHandle: Hande to the board.

• GpuBuffer: GPU buffer allocated by ATS_GMA_OCT_AllocBuffer().

12

RETURN_CODE ATS_GMA_OCT_GetBuffer(HANDLE boardHandle, cl_mem GpuInputBuffer,
cl_mem *GpuOutputBuffer, cl_command_queue
*clQueue, U32 timeout_ms, cl_event *endPro-
cessingEvent)

Get buffers on the GPU.

This function calls AlazarWaitAsyncBufferComplete() internally. This function must be
called at average rate that is equal to or greater than the rate at which GMA buffers complete.
Every time a buffer is retrieved using ATS_GMA_OCT_GetBuffer(), it must be posted back to
the board using ATS_GMA_OCT_PostBuffer(). Processing kernels (PreFFT, FFT, PostFFT, etc.)
and read (ReadOutputBuffer) should be called after this function.

Return ApiSuccess if the board received sufficient triggers to fill a DMA buffer.

Return ApiNotInitialized if ATS_StartCapture() was not called before calling this func-
tion, or it was called and failed.

Return ApiInvalidHandle if the boardHandle parameter is not valid.

Return ApiBufferOverflow if the board filled all the available DMA buffers and its on-board
memory. This may happen if the acquisition rate exceeds the bus bandwidth or the GPU
processing bandwidth.

Return ApiWaitTimeout if the timeout interval expired before the board received a sufficient
number of triggers to fill a buffer.

Return ApiFailed if a system of internal error occured.

Parameters

• boardHandle: Handle to the board.

• GpuInputBuffer: GPU buffer allocated by ATS_GMA_OCT_AllocBuffer().

• GpuOutputBuffer: Pointer to the unpacked and deinterleaved cl_mem buffer.

• clQueue: Pointer to a OpenCL command queue created by the library on which
processing occurs for a specific buffer.

• timeout_ms: Time the board will wait for a trigger before returning ApiWaitTimeout.

• endProcessingEvent: Event indicating the end of unpacking and deinterleaving.

13

RETURN_CODE ATS_GMA_OCT_StartCapture(HANDLE boardHandle)
Starts the acquisition.

This function calls AlazarStartCapture() internally.

Parameters

• boardHandle: Hande to the board.

14

RETURN_CODE ATS_GMA_OCT_PreFFT(HANDLE boardHandle, cl_mem *GpuInputBuffer,
cl_mem *GpuOutputBuffer, cl_event *startPro-
cessingEvent, cl_event *endProcessingEvent)

Prepares the buffer for Fast Fourier Transform calculation. All processing and reading calls
should be placed after getting a buffer with ATS_GMA_OCT_GetBuffer() and before posting it
back to the board with ATS_GMA_OCT_PostBuffer().

This function is designed to accept buffers coming from ATS_GMA_OCT_GetBuffer(). It is
however possible to perform custom processing on this buffer before if needed, and pass
the pointer to the newly processed buffer as input. However, the size and the data format
(16-bits) must remain the same.

This function launches a kernel on the GPU to prepare data before doing the FFT. Win-
dowing of each record in the buffer is performed depending on the window type used in
ATS_GMA_OCT_SetWindowFunction().

If FFT length is greater than the number of samples per records, a padding of the FFT occurs.

ATS_GMA_OCT_FFT() requires complex input buffers. Therefore, the output from
ATS_GMA_OCT_PreFFT() will have real and complex data interleaved.

Parameters

• boardHandle: Hande to the board.

• GpuInputBuffer: Pointer to a cl_mem buffer outputted from
ATS_GMA_OCT_GetBuffer(). Buffer must contain de-interleaved channels and
16-bits packing. Refer to ATSGMAFlags to get appropriate buffer format.

• GpuOutputBuffer: Pointer to the FFT ready cl_mem buffer. The size of the
GpuOutputBuffer will be the FFTLength x recordsPerBuffer x numberOfChannels x
2, to account for real and complex interleaving. Data type is single precision floating
point.

• startProcessingEvent: Event on which the PreFFT kernel will wait for before
launching.

• endProcessingEvent: Event indicating the end of PreFFT processing.

15

RETURN_CODE ATS_GMA_OCT_FFT(HANDLE boardHandle, cl_mem *GpuInputBuffer, cl_mem
*GpuOutputBuffer, cl_event *startProcessingEvent,
cl_event *endProcessingEvent)

Perform Fast Fourier Transform. All processing and reading calls should be placed after get-
ting a buffer with ATS_GMA_OCT_GetBuffer() and before posting it back to the board with
ATS_GMA_OCT_PostBuffer().

This function is designed to accept buffers coming from ATS_GMA_OCT_PreFFT(). It is how-
ever possible to perform custom processing on this buffer before if needed, and pass the
pointer to the newly processed buffer as input. However, the size, FFT length and the data
format (float) must remain the same.

This function launches a kernel to perform the FFT on each record within the GpuInputBuffer
using the clFFT library.

Parameters

• boardHandle: Hande to the board.

• GpuInputBuffer: Pointer to a cl_mem buffer outputted from
ATS_GMA_OCT_PreFFT().

• GpuOutputBuffer: Pointer to a cl_mem buffer after FFT. Has the same format and
size as GpuInputBuffer.

• startProcessingEvent: Event on which the FFT kernel will wait for before launch-
ing.

• endProcessingEvent: Event indicating the end of FFT processing.

16

RETURN_CODE ATS_GMA_OCT_PostFFT(HANDLE boardHandle, cl_mem *GpuInputBuffer,
cl_mem *GpuOutputBuffer, cl_event *startPro-
cessingEvent, cl_event *endProcessingEvent)

Output the desired output from Fast Fourier Transform. All processing and reading calls
should be placed after getting a buffer with ATS_GMA_OCT_GetBuffer() and before posting it
back to the board with ATS_GMA_OCT_PostBuffer().

This function is designed to accept buffers coming from ATS_GMA_OCT_FFT(). It is however
possible to perform custom processing on this buffer before if needed, and pass the pointer
to the newly processed buffer as input. However, the size, FFT length and the data format
(float) must remain the same.

This function launches a kernel to output the data as specified by ATS_GMA_OCT_OPTIONS.
If

Parameters

• boardHandle: Hande to the board.

• GpuInputBuffer: Pointer to a cl_mem buffer outputted from ATS_GMA_OCT_FFT().

• GpuOutputBuffer: Pointer to a cl_mem buffer after PostFFT. The size of the
GpuOutputBuffer will be the (FFTLength / 2) x recordsPerBuffer x numberOfChan-
nels x numberOfOutputs. Data type is single precision floating point.

• startProcessingEvent: Event on which the PostFFT kernel will wait for before
launching.

• endProcessingEvent: Event indicating the end of PostFFT processing.

17

RETURN_CODE ATS_GMA_OCT_ReadOutputBuffer(HANDLE boardHandle, cl_mem *GpuB-
uffer, float **hostBuffer, cl_event
*startReadEvent, cl_event *endReadE-
vent)

Sends the output data buffer back to host memory. All processing and reading calls should
be placed after getting a buffer with ATS_GMA_OCT_GetBuffer() and before posting it back to
the board with ATS_GMA_OCT_PostBuffer().

This function launches a read on GPU memory in a highly efficient manner. In order to maxi-
mize transfer speed between GPU and host memory, the size of the host buffer must be pre-set.
Therefore, it has the format and size of GpuOutputBuffer of ATS_GMA_OCT_PostFFT().

Parameters

• boardHandle: Hande to the board.

• GpuBuffer: Pointer to a cl_mem buffer outputted from ATS_GMA_OCT_PostFFT()

• hostBuffer.: Pointer to a float host pointer to receive GPU buffer.

• startProcessingEvent: Event on which the ReadOutputBuffer kernel will wait for
before launching.

• endProcessingEvent: Event indicating the end of ReadOutputBuffer reading.

18

RETURN_CODE ATS_GMA_OCT_FreeBuffer(HANDLE boardHandle, cl_mem GpuBuffer)
Frees a buffer allocated with ATS_GMA_OCT_AllocBuffer()

Return ApiSuccess if it succeeded

Return An error code if it failed. See error list in the ATS-SDK manual, ATS_GMA.log and
ATS_GMA_OCT.log for more information.

Parameters

• boardHandle: Handle to the board.

• GpuBuffer: GPU buffer allocated by ATS_GMA_OCT_AllocBuffer().

19

RETURN_CODE ATS_GMA_OCT_AbortCapture(HANDLE boardHandle)
Stops the acquisition.

Aborts an acquisition, stops data processing, and releases resources allocated by
ATS_GMA_OCT_Setup()

Return ApiSuccess if it succeeded

Return An error code if it failed. See error list in the ATS-SDK manual and ATS_GMA.log and
ATS_GMA_OCT.log for more information.

Parameters

• boardHandle: Handle to the board.

20

Index
A
ATS_GMA_OCT_AbortCapture (C++ function),

20
ATS_GMA_OCT_AllocBuffer (C++ function),

11
ATS_GMA_OCT_AMPLITUDE_OUTPUT (C++

class), 6
ATS_GMA_OCT_FFT (C++ function), 16
ATS_GMA_OCT_FreeBuffer (C++ function), 19
ATS_GMA_OCT_GenerateWindowFunction

(C++ function), 8
ATS_GMA_OCT_GetBuffer (C++ function), 13
ATS_GMA_OCT_IMAG_OUTPUT (C++ class), 6
ATS_GMA_OCT_LOG_OUTPUT (C++ class), 6
ATS_GMA_OCT_OPTIONS (C++ type), 6
ATS_GMA_OCT_PHASE_OUTPUT (C++ class),

6
ATS_GMA_OCT_PostBuffer (C++ function), 12
ATS_GMA_OCT_PostFFT (C++ function), 17
ATS_GMA_OCT_PreFFT (C++ function), 15
ATS_GMA_OCT_ReadOutputBuffer (C++ func-

tion), 18
ATS_GMA_OCT_REAL_OUTPUT (C++ class), 6
ATS_GMA_OCT_Setup (C++ function), 10
ATS_GMA_OCT_SetWindowFunction (C++

function), 9
ATS_GMA_OCT_StartCapture (C++ function),

14
ATS_GMA_OCT_WINDOWS (C++ type), 7

F
FFT_WINDOW_BARTLETT (C++ class), 7
FFT_WINDOW_BLACKMAN (C++ class), 7
FFT_WINDOW_BLACKMAN_HARRIS (C++

class), 7
FFT_WINDOW_HAMMING (C++ class), 7
FFT_WINDOW_HANNING (C++ class), 7
FFT_WINDOW_NONE (C++ class), 7

N
NUM_FFT_WINDOW_ITEMS (C++ class), 7

21

	Introduction
	Prerequisites
	System requirements

	ATS-GMA-OCT
	Usage
	Benchmarks
	ATS_GMA_OCT.log file
	API Reference

	Index

