

ATS-SDK USER GUIDE
ANNEX 1

July 2018

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions i

DOCUMENT NAVIGATION

This document contains intra-document links. You will need a PDF viewer with “Previous View”
functionality to navigate through the manual with ease.

If you are opening this PDF with the built-in
Mozilla® Firefox® PDF viewer, you can right-
click anywhere in the PDF window to access
page navigation:

Otherwise, this PDF is best viewed using a PDF viewer with “Previous View” functionality. If your
preferred PDF viewer does not include this functionality, you may wish to use one of the
following† options:

• Foxit® Reader: https://www.foxitsoftware.com/pdf-reader/ (available for Linux® &
Windows®)

• PDF Studio 2018: https://www.qoppa.com/pdfstudioviewer/download/ (available for
Linux & Windows)

• Adobe® Acrobat® Reader DC: https://get.adobe.com/reader/ (available for Windows)

If you are using Adobe Acrobat Reader, you will need to enable the Previous View and Next View
Page Navigation tools:

Right-click on the top toolbar and go to Show Page Navigation Tools, then select Previous View.
Repeat the process for Next View.

†This document includes links to information created and maintained by other private and/or public organizations. Alazar

Technologies Inc. (AlazarTech) provides these links solely for our users' information and convenience. AlazarTech does not control
or guarantee the accuracy, relevance, or completeness of information contained on a linked website. Furthermore, AlazarTech does
not endorse these organizations or the views they express or the products/services they offer. AlazarTech is not responsible for
transmissions users receive from linked websites, nor is it responsible for or liable in any way for commercial transactions which
users transact with linked websites.

https://www.foxitsoftware.com/pdf-reader/
https://www.qoppa.com/pdfstudioviewer/download/
https://get.adobe.com/reader/

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 1

ANNEX

1

DEPRECATED APIS & FUNCTIONS

A-1. Deprecated APIs

The following API is deprecated. Do not use in new designs.

A-1.1. Synchronous AutoDMA API

Synchronous AutoDMA API allows a board to transfer a segment of an AutoDMA
acquisition into one buffer while – at the same time – the application processes a previous
segment of the acquisition in another buffer.

Synchronous AutoDMA is deprecated; it is no longer maintained for compatibility with
existing applications. The last ATSApi compatible with Synchronous AutoDMA is version
5.10.25. There are no bug fixes or updates for Synchronous AutoDMA after ATSApi
version 5.10.25.

The Asynchronous AutoDMA API is recommended for all new applications.

The following table compares the asynchronous and synchronous AutoDMA APIs.

Attribute Asynchronous AutoDMA Synchronous AutoDMA

DMA buffer
count

Application defined. Two API allocated buffers.

CPU usage Interrupt driven, so very low.
More CPU cycles are available to
application threads.

Polling loop, so very high. Less CPU cycles
are available to application threads.

Data transfer DMA directly into user-supplied
buffer. No CPU cycles are used
to copy data.

DMA into API allocated buffer, then copy
to user-supplied buffer. CPU cycles used
to copy data are not available to
application threads.

DMA re- arm
time

Next DMA started by hardware
interrupt. Latency is lowest and
data throughput is highest.

Next DMA started in polling loop. Latency
is higher and data throughput is lower.

Master/slave
systems

Fully supported. Not recommended.

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 2

A-1.1.1. Using synchronous AutoDMA

Synchronous DMA API assumes that the PCI digitizer being controlled has dual-port
acquisition memory.

As shown below, the user program consumes data synchronously with the acquisition loop.
Hence the name Synchronous DMA.

A typical sequence of API calls for Synchronous DMA API is shown below. For readability
purposes, the following is pseudo-code. Please refer to the sample programs provided for
exact syntax and details of what the various parameters passed to these routines mean:

// Set up two AutoDMA buffers and start the DMA engine
// Data will be captured in the two buffers in a pin-pong
// mode. You will be able to process the first buffer while
// data is being captured into the second buffer and
// vice-versa

AlazarStartAutoDMA(h,
UserData[0],
UseHeader,
mode,
-(long)bd.PreDepth,
transferLength,
RecsPerBuffer,
bd.RecordCount,
&error,
CFlags,
in1,
&r3,
&r4);

// Issue Start Capture Command. No data transfer happens before this

AlazarStartCapture(h);

// Wait until all required records have been captured

while (looping == 1)
{

// Check if one of the AutoDMA buffers has been
// fully populated or not

AlazarGetNextAutoDMABuffer(h,
UserData[0],
UserData[1],
&WhichOne,
&RecsTransferred,
&error,
in1,
in1,
&TriggersOccurred,
&r4);

// If WhichOne is equal to 0 or 1, that particular buffer
// has been populated and hardware is DMAing

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 3

// into the other buffer

if ((WhichOne == 0)||(WhichOne == 1))
{

// Process Your Data here
// Note that while you process data,
// new data is still being captured into
// on-board dual port memory and transferred into
// the other AutoDMA buffer

SaveToChannelFiles(UserData[WhichOne]);

}

// Check if all records have been captured
if (RecsTransferred == (long)RecordCount)
{

// If all records have been captured, stop the while loop
looping = 0;

}

}

Note:

• The synchronous AutoDMA API gives poor performance with master-slave systems,
and is not recommended for use with such systems.

• Use the CFlags parameter in the call to AlazarStartAutoDMA to select the AutoDMA
mode.

• Record headers are only available in Traditional AutoDMA mode. To enable record
headers, call AlazarStartAutoDMA with the UseHeader parameter set to 1, and with
the mode in the CFlags parameter set to ADMA_TRADITIONAL_MODE.

• AlazarGetNextAutoDMABuffer copies sample data from internally allocated
AutoDMA buffers to an application buffer. An application may call this function
with a pointer to a single application allocated buffer, rather than two application
allocated buffers (Buffer[0] and Buffer[1] above) without affecting AutoDMA
operation.

• Calling AlazarWaitNextAsyncBufferComplete in a polling loop is equivalent to
calling AlazarEvents, AlazarWaitForBufferReady, and AlazarGetNextAutoDMABuffer,
but provides more internally allocated buffers, better throughput, and a simpler
programming interface.

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 4

A-2. Deprecated Functions

These functions are deprecated. Do not use in new designs.

A-2.1. AlazarAbortAutoDma

This routine is used to terminate the AutoDMA capture in cases where the trigger system
stopped generating triggers before the buffer was filled by the AutoDMA engine. The
routine will populate the buffer with the appropriate number of records that have been
successfully captured.

Syntax

C/C++
RETURN_CODE
AlazarAbortAutoDMA(

HANDLE h,
void* Buffer,
AUTODMA_STATUS* error,
U32 r1,
U32 r2,
U32 *r3,
U32 *r4

);

Parameters

h
[in] Board identification handle.

Buffer
[out] This Buffer is used to transfer a set of Records from the Device back to the
user application.

Error
[out] Error return code.

This error code may be one of the following values.

Identifier Value Meaning

ADMA_Completed 0 No errors occurred

ADMA_Success 0 No errors occurred

ADMA_Buffer1Invalid 1 Buffer1 is not a suitable buffer

ADMA_Buffer2Invalid 2 Buffer2 is not a suitable buffer

ADMA_BoardHandleInvalid 3 Board handle is not valid

ADMA_InternalBuffer1Invalid 4 The routine cannot allocate enough
memory because system resources are low

ADMA_InternalBuffer2Invalid 5 The routine cannot allocate enough
memory because system resources are low

ADMA_OverFlow 6 A hardware overflow occurred

ADMA_InvalidChannel 7 The channel selected is invalid

ADMA_DMAInProgress 8 A memory transfer is in progress

ADMA_UseHeaderNotSet 9 UseHeader must be set

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 5

ADMA_HeaderNotValid 10 An invalid header was encountered

ADMA_InvalidRecsPerBuffer 11 RecordCount must be a perfect multiple
of RecsPerBuffer

r1
[in] RESERVED.

r2
[in] RESERVED.

r3
[out] RESERVED.

r4
[out] RESERVED.

Return values

See enum RETURN_CODE in the ATS-SDK User Guide for a list of error codes.

See Also

AlazarStartAutoDMA
AlazarCloseAUTODma
Using synchronous AutoDMA

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 6

A-2.2. AlazarClose

Close a board handle.

Syntax

C/C++
void AlazarClose(

HANDLE BoardHandle
);

Parameters

BoardHandle
[in] Handle to board.

Return value

If the board is acquiring to on-board memory, this function returns 1. Otherwise, this
function returns 0.

Remarks

The API manages board handles internally. This function should only be used in
applications that are written for single board digitizer systems.

See Also

AlazarOpen

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 7

A-2.3. AlazarCloseAUTODma

This routine will close the AUTODMA capabilities of the device. Only call this upon exit or
error.

Syntax

C/C++
RETURN_CODE
AlazarCloseAUTODma(

HANDLE h,
);

Parameters

h
[in] Board identification handle.

Return values

See enum RETURN_CODE in the ATS-SDK User Guide for a list of error codes.

See Also

AlazarAbortAutoDma
Using synchronous AutoDMA

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 8

A-2.4. AlazarEvents

This function allows a user to enable or disable usage of software events in AutoDMA
mode. The driver manages the event processing and a user can only use an event in
conjunction with the API AlazarWaitForBufferReady (...). When the events are enabled
AlazarWaitForBufferReady(...) will wait until an AutoDMA buffer is available to the users
application. For a complete understanding of the Usage of the API AlazarEvents (...) refer
to the pseudo-code example provided in the API AlazarWaitForBufferReady (...).

Syntax

C/C++
RETURN_CODE
AlazarEvents(

HANDLE h,
U32 enable

);

Parameters

h
[in] Handle to the device.

enable
[in] This parameter may have one of the following values.

Identifier Value Description
SW_EVENTS_OFF 0 Disable events usage

SW_EVENTS_ON 1 Enable event usage

Return value

ApiSuccess (512) signifies that the API was able to enable the events

ApiFailed (513) signifies that the current driver does not support this feature.

Remarks

This functionality is only present on the ATS460, ATS660 and ATSS860 devices. It must be
called before calling AlazarStartAutoDMA().

If AlazarEvents(h,1) was not used, calling AlazarWaitForBufferReady(…) will return 672 and
will not disrupt any ongoing signal captures.

See Also

AlazarWaitForBufferReady
Using synchronous AutoDMA

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 9

A-2.5. AlazarFlushAutoDMA

The primary use of the API is to stop a Synchronous NPT acquisition. Scanning type
applications are usually configured such that the data capture is ongoing and stopping is
done by an external event. In this case trigger events have stopped and this API permits the
last buffer to be returned to the application.

Syntax

C/C++
long AlazarFlushAutoDMA (HANDLE h);

Parameters

h
[in] Handle to the device.

Return value

The number of valid triggers in the last buffer.

Remarks

Suppose an acquisition is running and all of the sudden, triggers stop coming in. Once the
software has determined that the acquisition is to be aborted, AlazarFlushAutoDMA
should be called. The routine will automatically generate the missing triggers in order to
complete the last buffer.

A last call to AlazarGetNextAutoDMABuffer is needed to read the LAST buffer. You will get
ApiFailed as a return value from AlazarGetNextAutoDMABuffer indicating a successful last
buffer. At this point, depending on your design, you may terminate the program or start a
new acquisition.

NOTE:
Internally, this routine calls AlazarStopAutoDMA so as not to allow the software to re arm
any new DMA requests. Only a call to AlazarStartAutoDMA will reset this action.

See Also

AlazarGetNextAutoDMABuffer
AlazarStartAutoDMA
Using synchronous AutoDMA

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 10

A-2.6. AlazarGetAutoDMAHeaderTimeStamp

This routine is a helper function, which can be used to retrieve the 40-bit TimeStamp from
the header of a particular record. The resulting number is composed of both the
TimeStampHighPart and TimeStampLowPart thus alleviating the user from calculating the
time stamp using the header values.

Syntax

C/C++
float
AlazarGetAutoDMAHeaderTimeStamp(

HANDLE h,
U32 Channel,
void* DataBuffer,
U32 Record,
AUTODMA_STATUS *error

);

Parameters

h
[in] Handle to the device.

Channel
[in] This parameter may be one of the following identifiers or values.

Identifier Value

CHANNEL_A 1

CHANNEL_B 2

DataBuffer
[in] The data buffer as returned from AlazarGetNextAutoDMABuffer.

Record
[in] Signifies the record number of interest for the given Data Buffer.

Error
[out] Error return code.

This error code may be one of the following values.

Identifier Value Meaning

ADMA_Completed 0 No errors occurred

ADMA_Success 0 No errors occurred

ADMA_Buffer1Invalid 1 Buffer1 is not a suitable buffer

ADMA_Buffer2Invalid 2 Buffer2 is not a suitable buffer

ADMA_BoardHandleInvalid 3 Board handle is not valid

ADMA_InternalBuffer1Invalid 4 The routine cannot allocate enough
memory because system resources are low

ADMA_InternalBuffer2Invalid 5 The routine cannot allocate enough
memory because system resources are low

ADMA_OverFlow 6 A hardware overflow occurred

ADMA_InvalidChannel 7 The channel selected is invalid

ADMA_DMAInProgress 8 A memory transfer is in progress

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 11

ADMA_UseHeaderNotSet 9 UseHeader must be set

ADMA_HeaderNotValid 10 An invalid header was encountered

ADMA_InvalidRecsPerBuffer 11 RecordCount must be a perfect multiple of
RecsPerBuffer

Return value

Upon success, i.e. error==ADMA_Success, the TimeStamp will be returned in a floating-
point format.

See Also

AlazarGetAutoDMAHeaderValue
AlazarGetAutoDMAPtr

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 12

A-2.7. AlazarGetAutoDMAHeaderValue

This routine is a helper function that can be used to retrieve all the various elements
available in the header of an AutoDMA record. It will only operate on records that were
captured when the Use Header variable in AlazarStartAutoDMA was set to a 1.

Syntax

C/C++
U32
AlazarGetAutoDMAHeaderValue(

HANDLE h,
U32 Channel,
void* DataBuffer,
U32 Record,
U32 Parameter,
AUTODMA_STATUS *error

);

Parameters

h
[in] Handle to the device.

Channel
[in] This parameter may be one of the following identifiers or values.

Identifier Value

CHANNEL_A 1

CHANNEL_B 2

DataBuffer
[in] The data buffer as returned from AlazarGetNextAutoDMABuffer.

Record
[in] Signifies the record number of interest for the provided Data Buffer.

Parameter
[in] Signifies which element the routine should extract from the record’s header.

This parameter may be one of the following identifiers or values.

Identifier Value

ADMA_CLOCKSOURCE 1

ADMA_CLOCKEDGE 2

ADMA_SAMPLERATE 3

ADMA_INPUTRANGE 4

ADMA_INPUTCOUPLING 5

ADMA_IMPUTIMPEDENCE 6

ADMA_EXTTRIGGERED 7

ADMA_CHA_TRIGGERED 8

ADMA_CHB_TRIGGERED 9

ADMA_TIMEOUT 10

ADMA_THISCHANTRIGGERED 11

ADMA_SERIALNUMBER 12

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 13

ADMA_SYSTEMNUMBER 13

ADMA_BOARDNUMBER 14

ADMA_WHICHCHANNEL 15

ADMA_SAMPLERESOLUTION 16

ADMA_DATAFORMAT 17

Error
[out] Error return code.

This error code may be one of the following values.

Identifier Value Meaning

ADMA_Completed 0 No errors occurred

ADMA_Success 0 No errors occurred

ADMA_Buffer1Invalid 1 Buffer1 is not a suitable buffer

ADMA_Buffer2Invalid 2 Buffer2 is not a suitable buffer

ADMA_BoardHandleInvalid 3 Board handle is not valid

ADMA_InternalBuffer1Invalid 4 The routine cannot allocate enough memory
because system resources are low

ADMA_InternalBuffer2Invalid 5 The routine cannot allocate enough memory
because system resources are low

ADMA_OverFlow 6 A hardware overflow occurred

ADMA_InvalidChannel 7 The channel selected is invalid

ADMA_DMAInProgress 8 A memory transfer is in progress

ADMA_UseHeaderNotSet 9 UseHeader must be set

ADMA_HeaderNotValid 10 An invalid header was encountered

ADMA_InvalidRecsPerBuffer 11 RecordCount must be a perfect multiple of
RecsPerBuffer

Return value

IF error==ADMA_Success, then the value of the asked Parameter is returned.

See Also

AlazarGetAutoDMAPtr
AlazarGetAutoDMAHeaderTimeStamp

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 14

A-2.8. AlazarGetAutoDMAPtr

This routine is a helper function used to retrieve a pointer to the first data element or first
header element of a particular record. If DataOrHeader is set to 1, then the resulting
pointer must be cast to PALAZAR_HEADER type. The user can then use the pointer to
access any of the header variables.

Ex. PALAZAR_HEADER p = (PALAZAR_HEADER) AlazarGetAutoDMAPtr (…);

Syntax

C/C++
void *
AlazarGetAutoDMAPtr(

HANDLE h,
U32 DataOrHeader,
U32 Channel,
void* DataBuffer,
U32 Record,
AUTODMA_STATUS *error

);

Parameters

h
[in] Handle to the device.

DataOrHeader
[in] Instruct the routine to return a pointer for the data or header portion. This
parameter may be one of the following values.

Value Meaning

0 Return the pointer for the data portion.

1 Return the pointer for the header portion.

Channel
[in] This parameter may be one of the following identifiers or values.

Identifier Value

CHANNEL_A 1

CHANNEL_B 2

DataBuffer
[in] The data buffer as returned from AlazarGetNextAutoDMABuffer.

Record
[in] Signifies the record number of interest for the given Data Buffer.

Error
[out] Error return code.

This error code may be one of the following values.

Identifier Value Meaning

ADMA_Completed 0 No errors occurred

ADMA_Success 0 No errors occurred

ADMA_Buffer1Invalid 1 Buffer1 is not a suitable buffer

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 15

ADMA_Buffer2Invalid 2 Buffer2 is not a suitable buffer

ADMA_BoardHandleInvalid 3 Board handle is not valid

ADMA_InternalBuffer1Invalid 4 The routine cannot allocate enough memory
because system resources are low

ADMA_InternalBuffer2Invalid 5 The routine cannot allocate enough memory
because system resources are low

ADMA_OverFlow 6 A hardware overflow occurred

ADMA_InvalidChannel 7 The channel selected is invalid

ADMA_DMAInProgress 8 A memory transfer is in progress

ADMA_UseHeaderNotSet 9 UseHeader must be set

ADMA_HeaderNotValid 10 An invalid header was encountered

ADMA_InvalidRecsPerBuffer 11 RecordCount must be a perfect multiple of
RecsPerBuffer

Return value

See enum RETURN_CODE in the ATS-SDK User Guide for a list of error codes.

See Also

AlazarGetAutoDMAHeaderTimeStamp
AlazarGetAutoDMAHeaderValue

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 16

A-2.9. AlazarGetNextAutoDMABuffer

After an application has called AlazarStartAutoDMA the application must call
AlazarGetNextAutoDMABuffer to retrieve the data buffers. Because of the nature of Auto
DMA, two buffers are required. The device driver dll will arbitrate to which buffer the data
will be returned. After a buffer has been filled, variable WhichOne equals the buffer id,
thus if the id is 0 then Buffer1 was used and likewise if the id is 1 then Buffer2 was used.
In the case where data is not available WhichOne will equal -1. This routine will always
return ApiSuccess (512) when either data has been transferred or when WhichOne = -1. A
return value of ApiFailed (513) indicates that all the Records Per Buffer has been
transferred

Syntax

C/C++
RETURN_CODE
AlazarGetNextAutoDMABuffer(

HANDLE h,
void* Buffer1,
void* Buffer2,
long* WhichOne,
long* RecordsTransferred,
AUTODMA_STATUS* error,
U32 r1,
U32 r2,
long *TriggersOccurred,
U32 * r4

);

Parameters

h
[in] Handle to the device.

Buffer1
[out] This Buffer is used to transfer a complete set of Records from the Device back
to the user application. It is one of two buffers that are alternated between. The
second buffer is Buffer2.

Buffer1 should be large enough to contain (RecordsPerBuffer*TransferLength) many
16-bit values (VB-Integer, C&C++-short).

If the Record header is selected (UseHeader = 1) then Buffer1 should be large
enough to hold (RecordsPerBuffer*(TransferLength+sizeof(ALAZAR_HEADER)) many
16bit values.

Buffer2
[out] This Buffer is used to transfer a complete set of Records from the Device back
to the user. It is one of two buffers that are alternated between. The other buffer is
Buffer1.

Buffer2 should be large enough to contain (RecordsPerBuffer*TransferLength) many
16-bit values (VB-Integer, C&C++-short).

If the Record header is selected (UseHeader = 1) then Buffer2 should be large
enough to hold.

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 17

WhichOne
[out] This is a return value that indicates to the user which of the two Buffers
(Buffer1 or Buffer2) the data was transferred into.

RecordsTransferred
[in | out] Indicates how many records have been transferred. This value will always
be a multiple of RecordsPerBuffer. It is the application's responsibility to initialize
the variable to 0 prior to the first call

Error
[out] Error return code.

This error code may be one of the following values.

Identifier Value Meaning

ADMA_Completed 0 No errors occurred

ADMA_Success 0 No errors occurred

ADMA_Buffer1Invalid 1 Buffer1 is not a suitable buffer

ADMA_Buffer2Invalid 2 Buffer2 is not a suitable buffer

ADMA_BoardHandleInvalid 3 Board handle is not valid

ADMA_InternalBuffer1Invalid 4 The routine cannot allocate enough memory
because system resources are low

ADMA_InternalBuffer2Invalid 5 The routine cannot allocate enough memory
because system resources are low

ADMA_OverFlow 6 A hardware overflow occurred

ADMA_InvalidChannel 7 The channel selected is invalid

ADMA_DMAInProgress 8 A memory transfer is in progress

ADMA_UseHeaderNotSet 9 UseHeader must be set

ADMA_HeaderNotValid 10 An invalid header was encountered

ADMA_InvalidRecsPerBuffer 11 RecordCount must be a perfect multiple
of RecsPerBuffer

r1
[in] RESERVED.

r2
[in] RESERVED.

TriggersOccurred
[out] This is the total number of triggers that have been captured since the last start
capture.

r4
[out] RESERVED.

Return value

See enum RETURN_CODE in the ATS-SDK User Guide for a list of error codes.

Remarks

Both Buffer1 and Buffer2 will be used in transferring the data from the device back to the
user application. However, if the RecordsPerBuffer is set in conjunction with
TransferLength such that all the data will fit in only one Buffer, then Only Buffer1 will be
used and the WhichOne variable will equal 0. Only one transaction will take place.

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 18

RecordsTransferred will be modified by the routine and is used to accumulate the number
of record that has been transferred. Always set the variable to 0 before calling this routine
and never modify its contents between repeating calls.

The user must ensure that Buffer1 and Buffer2 are valid buffers.

Buffer1 and Buffer2 should be large enough to contain (RecordsPerBuffer*TransferLength)
many 16-bit values (VB-Integer, C&C++-short).

If the Record header is selected (UseHeader = 1) then Buffer1 and Buffer2 should be large
enough to hold (RecordsPerBuffer*(TransferLength+sizeof(ALAZAR_HEADER)) many 16bit
values (VB-Integer, C&C++-short).

AlazarGetNextBuffer and AlazarGetNextAutoDMABuffer are identical.

See Also

AlazarStartAutoDMA
AlazarAbortAutoDma
AlazarGetNextBuffer
Using synchronous AutoDMA

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 19

A-2.10. AlazarGetNextBuffer

AlazarGetNextBuffer and AlazarGetNextAutoDMABuffer are identical. Please refer to
AlazarGetNextAutoDMABuffer.

Syntax

C/C++
RETURN_CODE
AlazarGetNextBuffer(

HANDLE h,
void* Buffer1,
void* Buffer2,
long* WhichOne,
long* RecordsTransferred,
AUTODMA_STATUS* error,
U32 r1,
U32 r2,
long *TriggersOccurred,
U32 * r4

);

Remarks

AlazarGetNextBuffer and AlazarGetNextAutoDMABuffer are identical.

See Also

AlazarGetNextAutoDMABuffer

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 20

A-2.11. AlazarOpen

Open and initialize a board.

Syntax

C/C++
HANDLE
AlazarOpen(

char *BoardName
);

Parameters

BoardName
[in] Name of board created by driver. For example “ATS850-0”.

Return value

A handle to the board.

Remarks

The ATS library manages board handles internally. This function should only be used in
applications that are written for single board digitizer systems.

See Also

AlazarClose

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 21

A-2.12. AlazarStartAutoDMA

This routine is used to enable the AUTODMA functionalities of the device. It must be called
prior to calling AlazarGetNextBuffer(...).

Syntax

C/C++
RETURN_CODE
AlazarStartAutoDMA(

HANDLE h,
void*
Buffer1, U32
UseHeader,
U32 ChannelSelect,
long TransferOffset,
U32 TransferLength,
U32 RecordsPerBuffer,
U32 RecordCount,
AUTODMA_STATUS*
error, U32 cFlags,
U32 r2,
U32
*r3,
U32 *r4

);

Parameters

h
[in] Handle to the device.

Buffer1
[out] Data buffer for the first set of transferred records. Buffer1 should be large
enough to contain (RecordsPerBuffer*TransferLength) many 16-bit values (VB-
Integer, C&C++-short).

If the Record header is selected (UseHeader = 1) then Buffer1 should be large
enough to hold (RecordsPerBuffer*(TransferLength+sizeof(ALAZAR_HEADER)) many
16bit values.

UseHeader
[in] If equal to 1 then the AUTODMA record header will precede each record in the
Buffer

ChannelSelect
[in] This parameter may be one of the following identifiers or values.

Identifier Value Meaning

CHANNEL_A 1 Single channel mode

CHANNEL_B 2 Single channel mode

CHANNEL_A | CHANNEL_B 3 Dual channel mode

TransferOffset
[in] Transfer offset relative to the Trigger point for each record.

TransferLength
[in] The amount to transfer for each record.

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 22

RecordsPerBuffer
[in] The number of records that will be transferred into Buffer1. (Please note the
size information in Buffer1 description).

RecordCount
[in] The number of records to be captured during this acquisition. Infinite Record
Count can be used to create an endless capture for any AutoDMA mode. To use
Inifinite records, set the RecordCount parameter of AlazarStartAutoDMA(…) to
0x7FFFFFFF. It is the user's responsibility to set the criteria for stopping an
acquisition.

Note that AlazarStartAutoDMA routine will overwrite any previous settings for this
parameter with the value passed in the RecordCount parameter (Please note the size
information in Buffer1 description).

Error
[out] Error return code.

This error code may be one of the following values.

Identifier Value Meaning

ADMA_Completed 0 No errors occurred

ADMA_Success 0 No errors occurred

ADMA_Buffer1Invalid 1 Buffer1 is not a suitable buffer

ADMA_Buffer2Invalid 2 Buffer2 is not a suitable buffer

ADMA_BoardHandleInvalid 3 Board handle is not valid

ADMA_InternalBuffer1Invalid 4 The routine cannot allocate enough memory
because system resources are low

ADMA_InternalBuffer2Invalid 5 The routine cannot allocate enough memory
because system resources are low

ADMA_OverFlow 6 A hardware overflow occurred

ADMA_InvalidChannel 7 The channel selected is invalid

ADMA_DMAInProgress 8 A memory transfer is in progress

ADMA_UseHeaderNotSet 9 UseHeader must be set

ADMA_HeaderNotValid 10 An invalid header was encountered

ADMA_InvalidRecsPerBuffer 11 RecordCount must be a perfect multiple of
RecsPerBuffer

cFlags
[in] Control Flags,{0 = The routine will automatically start the acquisition, 1 = The
user application must call AlazarStartCapture to start the acquisition}. The
constants available are as follows:

Identifier Meaning

ADMA_EXTERNAL_STARTCAPTURE
0x00000001

The User must call AlazarStartCapture
to start the acquisition

ADMA_TRADITIONAL_MODE
0x00000000

Traditional Auto Dma mode captures

ADMA_CONTINUOUS_MODE
0x00000100

Continuous Streaming mode without
trigger

ADMA_NPT
0x00000200

No-Pre-Trigger Auto DMA mode

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 23

r2
[in] RESERVED.

r3
[out] RESERVED.

r4
[out] RESERVED.

Return value

See enum RETURN_CODE in the ATS-SDK User Guide for a list of error codes.

Remarks

The user must ensure that Buffer1 is a valid buffer of the appropriate size.

Buffer1 should be large enough to contain (RecordsPerBuffer*TransferLength) many 16- bit
values (VB-Integer, C&C++-short).

If the Record header is selected (UseHeader = 1) then Buffer1 should be large enough to
hold (RecordsPerBuffer*(TransferLength+sizeof(ALAZAR_HEADER)) many 16bit values.

See Also

AlazarAbortAutoDma
AlazarGetNextAutoDMABuffer
Using synchronous AutoDMA

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 24

A-2.13. AlazarStopAutoDMA

This API is used to inhibit the software from issuing any new DMA request to the device. It
is meant as a helper function for the AlazarFlushAutoDMA API function.

Syntax

C/C++
Void AlazarStopAutoDMA(HANDLE h);

Parameters

h
[in] Handle to board.

Return value

None

Remarks

This function is useful in situations where the application software has multiple threads.
The software can call this routine to stop the device from issuing DMA requests in
preparation for calling API AlazarFlushAutoDMA.

See Also

AlazarFlushAutoDMA
Using synchronous AutoDMA

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 25

A-2.14. AlazarWaitForBufferReady

This function will stall the current thread of execution for tms number milliseconds or
until a buffer has been successfully transferred to a user space AutoDMA buffer. The
function must be called after API AlazarEvents(h,1) and before API
AlazarGetNextAutoDMABuffer(…). It will wait on the driver to signal the Driver's Internal
registered event for up to tms number of milliseconds. When the DMA completes, the
signaling event will wake up the Api.

Syntax

C/C++
RETURN_CODE
AlazarWaitForBufferReady(

HANDLE h,
U32 tms

);

Parameters

h
[in] Handle to the device.

tms
[in] time in milliseconds.

Return values

670 - signifies that a NULL was used for the handle

671 - signifies that the current device driver does not support events. 672 – Events were
not activated using API AlazarEvents.

ApiSuccessFul or 512 signifies that the internal wait event was successfully registered and
signaled by the ISR.

ApiFailed or 513 signifies that the internal wait event did not register.

ApiWaitTimeOut or 579 signifies that the internal wait event was not signaled by the ISR.

Remarks

This functionality is only present on the ATS460, ATS660 and ATSS860 devices.

If AlazarEvents(h,1) was not used, calling AlazarWaitForBufferReady(...) will return
ApiFailed and will not disrupt any ongoing signal captures.

Below is a pseudo-code fragment that shows the operations of API AlazarEvents(…) and
API AlazarWaitForBufferReady(…).

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 26

Pseudo-code:

AlazarSetRecordSize(...);
AlazarSetCaptureClock(...);
AlazarInputControl(...);
AlazarInputControl(...);
AlazarSetTriggerOperation(...)
//
AlazarEvents(h,1);
//
AlazarStartAutoDMA(...);
while (looping == 1)
{

AlazarWaitForBufferReady(h, 10);
status = AlazarGetNextAutoDMABuffer();
if (status == 513)
{

looping = 0;
}
//Valid data exists in either UserData[0] or UserData[1]
if ((WhichOne == 0)||(WhichOne == 1))
{

//Process Your Data here
...

}
if (error == ADMA_OverFlow)
{

looping = 0;
returnValue = -4;

}

}
AlazarCloseAUTODma(...);
//
AlazarEvents(h,0);
//

See Also

AlazarEvents
Using synchronous AutoDMA

©2018 Alazar Technologies Inc. ATS-SDK User Guide Annex 1: Deprecated APIs & Functions 27

INDEX

AlazarAbortAutoDma .. 4
AlazarClose.. 6
AlazarCloseAUTODma .. 7
AlazarEvents ... 8
AlazarFlushAutoDMA ... 9
AlazarGetAutoDMAHeaderTimeStamp ... 10
AlazarGetAutoDMAHeaderValue ... 12
AlazarGetAutoDMAPtr ... 14
AlazarGetNextAutoDMABuffer .. 16
AlazarGetNextBuffer ... 19
AlazarOpen ... 20
AlazarStartAutoDMA .. 21
AlazarStopAutoDMA ... 24
AlazarWaitForBufferReady .. 25
Synchronous AutoDMA API ... 1
Using synchronous AutoDMA ... 2

	Document Navigation
	Deprecated APIs
	Synchronous AutoDMA API
	UsingSynchronousAutoDMA

	Deprecated Functions
	AlazarAbortAutoDma
	AlazarClose
	AlazarCloseAUTODma
	AlazarEvents
	AlazarFlushAutoDMA
	AlazarGetAutoDMAHeaderTimeStamp
	AlazarGetAutoDMAHeaderValue
	AlazarGetAutoDMAPtr
	AlazarGetNextAutoDMABuffer
	AlazarGetNextBuffer
	AlazarOpen
	AlazarStartAutoDMA
	AlazarStopAutoDMA
	AlazarWaitForBufferReady

	INDEX

